Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 105, Issue 6, Pages 937–942
DOI: https://doi.org/10.4213/mzm12404
(Mi mzm12404)
 

This article is cited in 14 scientific papers (total in 14 papers)

Brief Communications

On the Homogenization of Periodic Hyperbolic Systems

Yu. M. Meshkova

Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
References:
Keywords: periodic differential operators, hyperbolic systems, homogenization, corrector.
Funding agency Grant number
Russian Science Foundation 17-11-01069
This work was supported by the Russian Science Foundation under grant 17-11-01069.
Received: 26.11.2018
English version:
Mathematical Notes, 2019, Volume 105, Issue 6, Pages 929–934
DOI: https://doi.org/10.1134/S0001434619050316
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. M. Meshkova, “On the Homogenization of Periodic Hyperbolic Systems”, Mat. Zametki, 105:6 (2019), 937–942; Math. Notes, 105:6 (2019), 929–934
Citation in format AMSBIB
\Bibitem{Mes19}
\by Yu.~M.~Meshkova
\paper On the Homogenization of Periodic Hyperbolic Systems
\jour Mat. Zametki
\yr 2019
\vol 105
\issue 6
\pages 937--942
\mathnet{http://mi.mathnet.ru/mzm12404}
\crossref{https://doi.org/10.4213/mzm12404}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954323}
\elib{https://elibrary.ru/item.asp?id=37652177}
\transl
\jour Math. Notes
\yr 2019
\vol 105
\issue 6
\pages 929--934
\crossref{https://doi.org/10.1134/S0001434619050316}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000473246800031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068178595}
Linking options:
  • https://www.mathnet.ru/eng/mzm12404
  • https://doi.org/10.4213/mzm12404
  • https://www.mathnet.ru/eng/mzm/v105/i6/p937
  • This publication is cited in the following 14 articles:
    1. M. A. Dorodnyi, T. A. Suslina, “Porogovye approksimatsii funktsii ot faktorizovannogo operatornogo semeistva”, Algebra i analiz, 36:1 (2024), 95–161  mathnet
    2. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Yu. M. Meshkova, “Variations on the theme of the Trotter-Kato theorem for homogenization of periodic hyperbolic systems”, Russ. J. Math. Phys., 30:4 (2023), 561  crossref  mathscinet
    4. K. Cherednichenko, I. Velčić, J. Žubrinić, “Operator-norm resolvent estimates for thin elastic periodically heterogeneous rods in moderate contrast”, Calc. Var., 62:5 (2023), 147  crossref
    5. T. A. Suslina, “Threshold approximations for the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 35:3 (2024), 537–570  mathnet  crossref
    6. M. A. Dorodnyi, T. A. Suslina, “Homogenization of a non-stationary periodic Maxwell system in the case of constant permeability”, J. Differ. Equ., 307 (2022), 348–388  crossref  mathscinet  isi
    7. K. Cherednichenko, S. D'Onofrio, “Operator-norm homogenisation estimates for the system of Maxwell equations on periodic singular structures”, Calc. Var. Partial Differ. Equ., 61:2 (2022), 67  crossref  mathscinet  isi
    8. K. Cherednichenko, I. Velcic, “Sharp operator-norm asymptotics for thin elastic plates with rapidly oscillating periodic properties”, J. Lond. Math. Soc.-Second Ser., 105:3 (2022), 1634–1680  crossref  mathscinet  isi
    9. Dorodnyi M.A., “Operator Error Estimates For Homogenization of the Nonstationary Schrodinger-Type Equations: Sharpness of the Results”, Appl. Anal., 2021  crossref  mathscinet  isi
    10. Yu. M. Meshkova, “On operator error estimates for homogenization of hyperbolic systems with periodic coefficients”, J. Spectr. Theory, 11:2 (2021), 587–660  crossref  mathscinet  isi  scopus
    11. T. A. Suslina, “Homogenization of the Higher-Order Hyperbolic Equations with Periodic Coefficients”, Lobachevskii J Math, 42:14 (2021), 3518  crossref  mathscinet
    12. M. Dorodnyi, T. A. Suslina, “Operator error estimates for homogenization of hyperbolic equations”, Funct. Anal. Appl., 54:1 (2020), 53–58  mathnet  crossref  crossref  mathscinet  isi  elib
    13. M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in Rd: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703  mathnet  crossref  mathscinet
    14. M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054  mathnet  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:390
    Full-text PDF :40
    References:51
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025