Abstract:
A wide class of matrix elliptic second-order differential operators A=A(x,D)A=A(x,D) with periodic coefficients, acting in L2(Rd;Cn), is studied. The operator A is assumed to admit a factorization of the form A=X∗X, where X is a homogeneous first-order differential operator. Approximation for the operator exponential e−Aτ as τ→∞ in the (L2(Rd;Cn))-operator norm is obtained, with error estimate of order of τ−1. In approximation, a corrector is taken into account. The result is applied to the study of homogenization for solutions of the Cauchy problem ∂τuε=−Aεuε, where Aε=A(x/ε,D). Approximation with corrector for uε in the (L2(Rd;Cn))-norm is obtained for fixed τ>0, with error estimate of order of ε2.
Citation:
E. S. Vasilevskaya, “Homogenization with a corrector for a parabolic Cauchy problem with periodic coefficients”, Algebra i Analiz, 21:1 (2009), 3–60; St. Petersburg Math. J., 21:1 (2010), 1–41
\Bibitem{Vas09}
\by E.~S.~Vasilevskaya
\paper Homogenization with a~corrector for a~parabolic Cauchy problem with periodic coefficients
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 1
\pages 3--60
\mathnet{http://mi.mathnet.ru/aa858}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553050}
\zmath{https://zbmath.org/?q=an:1203.35027}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 1
\pages 1--41
\crossref{https://doi.org/10.1090/S1061-0022-09-01083-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273495900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870984199}
Linking options:
https://www.mathnet.ru/eng/aa858
https://www.mathnet.ru/eng/aa/v21/i1/p3
This publication is cited in the following 31 articles:
M. A. Dorodnyi, T. A. Suslina, “Porogovye approksimatsii funktsii ot faktorizovannogo operatornogo semeistva”, Algebra i analiz, 36:1 (2024), 95–161
M. A. Dorodnyi, “High-frequency homogenization of multidimensional hyperbolic equations”, Applicable Analysis, 2024, 1
S. E. Pastukhova, “L2-otsenki pogreshnosti usredneniya parabolicheskikh uravnenii s uchetom korrektorov”, SMFN, 69, no. 1, Rossiiskii universitet druzhby narodov, M., 2023, 134–151
M. A. Dorodnyi, T. A. Suslina, “Homogenization of hyperbolic equations: operator estimates with correctors taken into account”, Funct. Anal. Appl., 57:4 (2023), 364–370
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
A. A. Miloslova, T. A. Suslina, “Homogenization of the Higher-Order Parabolic Equations with Periodic Coefficients”, J Math Sci, 277:6 (2023), 959
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
T. A. Suslina, “Threshold approximations for the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 35:3 (2024), 537–570
Akhmatova A.R. Aksenova E.S. Sloushch V.A. Suslina T.A., “Homogenization of the Parabolic Equation With Periodic Coefficients At the Edge of a Spectral Gap”, Complex Var. Elliptic Equ., 67:3 (2022), 523–555
T. A. Suslina, “Homogenization of the Schrödinger-type equations: operator estimates with correctors”, Funct. Anal. Appl., 56:3 (2022), 229–234
A. A. Mishulovich, “Usrednenie mnogomernykh parabolicheskikh uravnenii s periodicheskimi koeffitsientami na krayu vnutrennei lakuny”, Matematicheskie voprosy teorii rasprostraneniya voln. 52, Zap. nauchn. sem. POMI, 516, POMI, SPb., 2022, 135–175
A. A. Miloslova, T. A. Suslina, “Usrednenie parabolicheskikh uravnenii vysokogo poryadka s periodicheskimi koeffitsientami”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 130–191
Dorodnyi M.A., “Operator Error Estimates For Homogenization of the Nonstationary Schrodinger-Type Equations: Sharpness of the Results”, Appl. Anal., 2021
M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in Rd: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703
Suslina T.A., “Homogenization of Higher-Order Parabolic Systems in a Bounded Domain”, Appl. Anal., 98:1-2, SI (2019), 3–31
Yu. M. Meshkova, “Homogenization of periodic parabolic systems in the L2(Rd)-norm with the corrector taken into account”, St. Petersburg Math. J., 31:4 (2020), 675–718
M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054
Dorodnyi M.A. Suslina T.A., “Spectral Approach to Homogenization of Hyperbolic Equations With Periodic Coefficients”, J. Differ. Equ., 264:12 (2018), 7463–7522
Suslina T., “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, J. Math. Anal. Appl., 446:2 (2017), 1466–1523
V. V. Zhikov, S. E. Pastukhova, “Asimptotika fundamentalnogo resheniya dlya uravneniya diffuzii v periodicheskoi srede na bolshikh vremenakh i ee primenenie k otsenkam teorii usredneniya”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 63, no. 2, Rossiiskii universitet druzhby narodov, M., 2017, 223–246