Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2009, Volume 21, Issue 1, Pages 3–60 (Mi aa858)  

This article is cited in 31 scientific papers (total in 31 papers)

Homogenization with a corrector for a parabolic Cauchy problem with periodic coefficients

E. S. Vasilevskaya

St. Petersburg State University, Faculty of Physics, St. Petersburg, Russia
References:
Abstract: A wide class of matrix elliptic second-order differential operators A=A(x,D)A=A(x,D) with periodic coefficients, acting in L2(Rd;Cn), is studied. The operator A is assumed to admit a factorization of the form A=XX, where X is a homogeneous first-order differential operator. Approximation for the operator exponential eAτ as τ in the (L2(Rd;Cn))-operator norm is obtained, with error estimate of order of τ1. In approximation, a corrector is taken into account. The result is applied to the study of homogenization for solutions of the Cauchy problem τuε=Aεuε, where Aε=A(x/ε,D). Approximation with corrector for uε in the (L2(Rd;Cn))-norm is obtained for fixed τ>0, with error estimate of order of ε2.
Keywords: parabolic Cauchy problem, homogenization, effective operator, corrector.
Received: 01.09.2008
English version:
St. Petersburg Mathematical Journal, 2010, Volume 21, Issue 1, Pages 1–41
DOI: https://doi.org/10.1090/S1061-0022-09-01083-8
Bibliographic databases:
MSC: 35B27, 35K30
Language: Russian
Citation: E. S. Vasilevskaya, “Homogenization with a corrector for a parabolic Cauchy problem with periodic coefficients”, Algebra i Analiz, 21:1 (2009), 3–60; St. Petersburg Math. J., 21:1 (2010), 1–41
Citation in format AMSBIB
\Bibitem{Vas09}
\by E.~S.~Vasilevskaya
\paper Homogenization with a~corrector for a~parabolic Cauchy problem with periodic coefficients
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 1
\pages 3--60
\mathnet{http://mi.mathnet.ru/aa858}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553050}
\zmath{https://zbmath.org/?q=an:1203.35027}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 1
\pages 1--41
\crossref{https://doi.org/10.1090/S1061-0022-09-01083-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273495900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870984199}
Linking options:
  • https://www.mathnet.ru/eng/aa858
  • https://www.mathnet.ru/eng/aa/v21/i1/p3
  • This publication is cited in the following 31 articles:
    1. M. A. Dorodnyi, T. A. Suslina, “Porogovye approksimatsii funktsii ot faktorizovannogo operatornogo semeistva”, Algebra i analiz, 36:1 (2024), 95–161  mathnet
    2. M. A. Dorodnyi, “High-frequency homogenization of multidimensional hyperbolic equations”, Applicable Analysis, 2024, 1  crossref
    3. S. E. Pastukhova, “L2-otsenki pogreshnosti usredneniya parabolicheskikh uravnenii s uchetom korrektorov”, SMFN, 69, no. 1, Rossiiskii universitet druzhby narodov, M., 2023, 134–151  mathnet  crossref
    4. M. A. Dorodnyi, T. A. Suslina, “Homogenization of hyperbolic equations: operator estimates with correctors taken into account”, Funct. Anal. Appl., 57:4 (2023), 364–370  mathnet  crossref  crossref
    5. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. A. A. Miloslova, T. A. Suslina, “Homogenization of the Higher-Order Parabolic Equations with Periodic Coefficients”, J Math Sci, 277:6 (2023), 959  crossref
    7. V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  mathnet  crossref
    8. T. A. Suslina, “Threshold approximations for the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 35:3 (2024), 537–570  mathnet  crossref
    9. Akhmatova A.R. Aksenova E.S. Sloushch V.A. Suslina T.A., “Homogenization of the Parabolic Equation With Periodic Coefficients At the Edge of a Spectral Gap”, Complex Var. Elliptic Equ., 67:3 (2022), 523–555  crossref  mathscinet  isi  scopus
    10. T. A. Suslina, “Homogenization of the Schrödinger-type equations: operator estimates with correctors”, Funct. Anal. Appl., 56:3 (2022), 229–234  mathnet  crossref  crossref
    11. A. A. Mishulovich, “Usrednenie mnogomernykh parabolicheskikh uravnenii s periodicheskimi koeffitsientami na krayu vnutrennei lakuny”, Matematicheskie voprosy teorii rasprostraneniya voln. 52, Zap. nauchn. sem. POMI, 516, POMI, SPb., 2022, 135–175  mathnet  mathscinet
    12. A. A. Miloslova, T. A. Suslina, “Usrednenie parabolicheskikh uravnenii vysokogo poryadka s periodicheskimi koeffitsientami”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 130–191  mathnet  crossref
    13. Dorodnyi M.A., “Operator Error Estimates For Homogenization of the Nonstationary Schrodinger-Type Equations: Sharpness of the Results”, Appl. Anal., 2021  crossref  isi
    14. M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in Rd: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703  mathnet  crossref  mathscinet
    15. Suslina T.A., “Homogenization of Higher-Order Parabolic Systems in a Bounded Domain”, Appl. Anal., 98:1-2, SI (2019), 3–31  crossref  mathscinet  zmath  isi  scopus
    16. Yu. M. Meshkova, “Homogenization of periodic parabolic systems in the L2(Rd)-norm with the corrector taken into account”, St. Petersburg Math. J., 31:4 (2020), 675–718  mathnet  crossref  isi  elib
    17. M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054  mathnet  crossref  isi  elib
    18. Dorodnyi M.A. Suslina T.A., “Spectral Approach to Homogenization of Hyperbolic Equations With Periodic Coefficients”, J. Differ. Equ., 264:12 (2018), 7463–7522  crossref  mathscinet  zmath  isi
    19. Suslina T., “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, J. Math. Anal. Appl., 446:2 (2017), 1466–1523  crossref  mathscinet  zmath  isi  elib  scopus
    20. V. V. Zhikov, S. E. Pastukhova, “Asimptotika fundamentalnogo resheniya dlya uravneniya diffuzii v periodicheskoi srede na bolshikh vremenakh i ee primenenie k otsenkam teorii usredneniya”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 63, no. 2, Rossiiskii universitet druzhby narodov, M., 2017, 223–246  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:1163
    Full-text PDF :370
    References:121
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025