Citation:
M. Sh. Birman, T. A. Suslina, “Periodic differential operators of second order. Threshold properties and averagings”, Algebra i Analiz, 15:5 (2003), 1–108; St. Petersburg Math. J., 15:5 (2004), 639–714
\Bibitem{BirSus03}
\by M.~Sh.~Birman, T.~A.~Suslina
\paper Periodic differential operators of second order. Threshold properties and averagings
\jour Algebra i Analiz
\yr 2003
\vol 15
\issue 5
\pages 1--108
\mathnet{http://mi.mathnet.ru/aa817}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068790}
\zmath{https://zbmath.org/?q=an:1072.47042}
\transl
\jour St. Petersburg Math. J.
\yr 2004
\vol 15
\issue 5
\pages 639--714
\crossref{https://doi.org/10.1090/S1061-0022-04-00827-1}
Linking options:
https://www.mathnet.ru/eng/aa817
https://www.mathnet.ru/eng/aa/v15/i5/p1
This publication is cited in the following 199 articles:
Yi-Sheng Lim, Josip Žubrinić, “An Operator-Asymptotic Approach to Periodic Homogenization for Equations of Linearized Elasticity”, Asymptotic Analysis, 2025
Kirill Cherednichenko, Alexander V. Kiselev, Igor Velčić, Josip Žubrinić, “Effective Behaviour of Critical-Contrast PDEs: Micro-Resonances, Frequency Conversion, and Time Dispersive Properties. II”, Commun. Math. Phys., 406:4 (2025)
M. A. Dorodnyi, T. A. Suslina, “Porogovye approksimatsii funktsii ot faktorizovannogo operatornogo semeistva”, Algebra i analiz, 36:1 (2024), 95–161
Nikolay Filonov, Ilya Kachkovskiy, “On Spectral Bands of Discrete Periodic Operators”, Commun. Math. Phys., 405:2 (2024)
Kirill D. Cherednichenko, Yulia Yu. Ershova, Alexander V. Kiselev, “Norm-Resolvent Convergence for Neumann Laplacians on Manifold Thinning to Graphs”, Mathematics, 12:8 (2024), 1161
T. A. Suslina, “Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition”, Izv. Math., 88:4 (2024), 678–759
Alexander V. Kiselev, Kirill Ryadovkin, “Phase Transition in a Periodic Tubular Structure”, SIAM J. Appl. Math., 84:3 (2024), 890
K. S. Ryadovkin, “On periodic branching random walks on Zd with infinite variance of jumps”, Theory Probab. Appl., 69:1 (2024), 88–98
Yi-Sheng Lim, “A high-contrast composite with annular inclusions: Norm-resolvent asymptotics”, Journal of Mathematical Analysis and Applications, 539:1 (2024), 128462
M. A. Dorodnyi, “High-frequency homogenization of multidimensional hyperbolic equations”, Applicable Analysis, 2024, 1
S. E. Pastukhova, “Error estimates taking account of correctors in homogenization of elliptic operators”, Sb. Math., 215:7 (2024), 932–952
M. V. Platonova, K. S. Ryadovkin, “Vetvyaschiesya diffuzionnye protsessy v periodicheskikh sredakh”, Veroyatnost i statistika. 36, Zap. nauchn. sem. POMI, 535, POMI, SPb., 2024, 214–236
S. A. Nazarov, “Asimptotika spektra kraevoi zadachi s usloviem Steklova na melkikh mnozhestvakh, raspredelënnykh periodicheski vdol kontura”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 51, K yubileyu Niny Nikolaevny Uraltsevoi, Zap. nauchn. sem. POMI, 536, POMI, SPb., 2024, 178–227
S. E. Pastukhova, “L2-otsenki pogreshnosti usredneniya parabolicheskikh uravnenii s uchetom korrektorov”, SMFN, 69, no. 1, Rossiiskii universitet druzhby narodov, M., 2023, 134–151
S. E. Pastukhova, “On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems”, Math. Notes, 114:3 (2023), 322–338
M. A. Dorodnyi, T. A. Suslina, “Homogenization of hyperbolic equations: operator estimates with correctors taken into account”, Funct. Anal. Appl., 57:4 (2023), 364–370
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
A. A. Raev, V. A. Slousch, T. A. Suslina, “Usrednenie odnomernogo periodicheskogo operatora chetvertogo poryadka s singulyarnym potentsialom”, Matematicheskie voprosy teorii rasprostraneniya voln. 53, Zap. nauchn. sem. POMI, 521, POMI, SPb., 2023, 212–239
D.I. Borisov, “Homogenization for operators with arbitrary perturbations in coefficients”, Journal of Differential Equations, 369 (2023), 41
Éric Cancès, Louis Garrigue, David Gontier, “Second-Order Homogenization of Periodic Schrödinger Operators with Highly Oscillating Potentials”, SIAM J. Math. Anal., 55:3 (2023), 2288