Citation:
M. Sh. Birman, T. A. Suslina, “Averaging of periodic elliptic differential operators with the account of a corrector”, Algebra i Analiz, 17:6 (2005), 1–104; St. Petersburg Math. J., 17:6 (2006), 897–973
\Bibitem{BirSus05}
\by M.~Sh.~Birman, T.~A.~Suslina
\paper Averaging of periodic elliptic differential operators with the account of a~corrector
\jour Algebra i Analiz
\yr 2005
\vol 17
\issue 6
\pages 1--104
\mathnet{http://mi.mathnet.ru/aa714}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2202045}
\zmath{https://zbmath.org/?q=an:1175.35007}
\elib{https://elibrary.ru/item.asp?id=9188322}
\transl
\jour St. Petersburg Math. J.
\yr 2006
\vol 17
\issue 6
\pages 897--973
\crossref{https://doi.org/10.1090/S1061-0022-06-00935-6}
Linking options:
https://www.mathnet.ru/eng/aa714
https://www.mathnet.ru/eng/aa/v17/i6/p1
This publication is cited in the following 105 articles:
Yi-Sheng Lim, Josip Žubrinić, “An Operator-Asymptotic Approach to Periodic Homogenization for Equations of Linearized Elasticity”, Asymptotic Analysis, 2025
Kirill Cherednichenko, Alexander V. Kiselev, Igor Velčić, Josip Žubrinić, “Effective Behaviour of Critical-Contrast PDEs: Micro-Resonances, Frequency Conversion, and Time Dispersive Properties. II”, Commun. Math. Phys., 406:4 (2025)
M. A. Dorodnyi, T. A. Suslina, “Porogovye approksimatsii funktsii ot faktorizovannogo operatornogo semeistva”, Algebra i analiz, 36:1 (2024), 95–161
T. A. Suslina, “Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition”, Izv. Math., 88:4 (2024), 678–759
M. A. Dorodnyi, “High-frequency homogenization of multidimensional hyperbolic equations”, Applicable Analysis, 2024, 1
S. E. Pastukhova, “Error estimates taking account of correctors in homogenization of elliptic operators”, Sb. Math., 215:7 (2024), 932–952
I. Y. Popov, E. S. Trifanova, A. S. Bagmutov, I. V. Blinova, “Barrier composed of perforated resonators and boundary conditions”, Eurasian Math. J., 15:3 (2024), 68–76
S. E. Pastukhova, “L2-otsenki pogreshnosti usredneniya parabolicheskikh uravnenii s uchetom korrektorov”, SMFN, 69, no. 1, Rossiiskii universitet druzhby narodov, M., 2023, 134–151
S. E. Pastukhova, “On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems”, Math. Notes, 114:3 (2023), 322–338
M. A. Dorodnyi, T. A. Suslina, “Homogenization of hyperbolic equations: operator estimates with correctors taken into account”, Funct. Anal. Appl., 57:4 (2023), 364–370
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
A. A. Raev, V. A. Slousch, T. A. Suslina, “Usrednenie odnomernogo periodicheskogo operatora chetvertogo poryadka s singulyarnym potentsialom”, Matematicheskie voprosy teorii rasprostraneniya voln. 53, Zap. nauchn. sem. POMI, 521, POMI, SPb., 2023, 212–239
A. A. Miloslova, T. A. Suslina, “Homogenization of the Higher-Order Parabolic Equations with Periodic Coefficients”, J Math Sci, 277:6 (2023), 959
Andrii Khrabustovskyi, “Operator estimates for the Neumann sieve problem”, Annali di Matematica, 202:4 (2023), 1955
Kirill Cherednichenko, Igor Velčić, Josip Žubrinić, “Operator-norm resolvent estimates for thin elastic periodically heterogeneous rods in moderate contrast”, Calc. Var., 62:5 (2023)
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
T. A. Suslina, “Threshold approximations for the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 35:3 (2024), 537–570
Senik N.N., “Homogenization For Locally Periodic Elliptic Operators”, J. Math. Anal. Appl., 505:2 (2022), 125581
Dorodnyi M.A. Suslina T.A., “Homogenization of a Non-Stationary Periodic Maxwell System in the Case of Constant Permeability”, J. Differ. Equ., 307 (2022), 348–388
Cherednichenko K. D'Onofrio S., “Operator-Norm Homogenisation Estimates For the System of Maxwell Equations on Periodic Singular Structures”, Calc. Var. Partial Differ. Equ., 61:2 (2022), 67