Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 6, Pages 30–107 (Mi aa540)  

This article is cited in 29 scientific papers (total in 29 papers)

Research Papers

Operator error estimates in the homogenization problem for nonstationary periodic equations

M. Sh. Birman, T. A. Suslina

St. Petersburg State University, Faculty of Physics
References:
Abstract: Matrix periodic differential operators (DO's) A=A(x,D)A=A(x,D) in L2(Rd;Cn) are considered. The operators are assumed to admit factorization of the form A=XX, where X is a homogeneous first order DO. Let Aε=A(ε1x,D), ε>0. The behavior of the solutions uε(x,τ) of the Cauchy problem for the Schrödinger equation iτuε=Aεuε, and also the behavior of those for the hyperbolic equation 2τuε=Aεuε is studied as ε0. Let u0 be the solution of the corresponding homogenized problem. Estimates of order ε are obtained for the L2(Rd;Cn)-norm of the difference uεu0 for a fixed τR. The estimates are uniform with respect to the norm of initial data in the Sobolev space Hs(Rd;Cn), where s=3 in the case of the Schrödinger equation and s=2 in the case of the hyperbolic equation. The dependence of the constants in estimates on the time τ is traced, which makes it possible to obtain qualified error estimates for small ε and large |τ|=O(εα) with appropriate α<1.
Keywords: Periodic operators, nonstationary equations, Cauchy problem, threshold effect, homogenization, effective operator.
Received: 10.08.2008
English version:
St. Petersburg Mathematical Journal, 2009, Volume 20, Issue 6, Pages 873–928
DOI: https://doi.org/10.1090/S1061-0022-09-01077-2
Bibliographic databases:
Document Type: Article
MSC: 35B27
Language: Russian
Citation: M. Sh. Birman, T. A. Suslina, “Operator error estimates in the homogenization problem for nonstationary periodic equations”, Algebra i Analiz, 20:6 (2008), 30–107; St. Petersburg Math. J., 20:6 (2009), 873–928
Citation in format AMSBIB
\Bibitem{BirSus08}
\by M.~Sh.~Birman, T.~A.~Suslina
\paper Operator error estimates in the homogenization problem for nonstationary periodic equations
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 6
\pages 30--107
\mathnet{http://mi.mathnet.ru/aa540}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2530894}
\zmath{https://zbmath.org/?q=an:1206.35028}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 6
\pages 873--928
\crossref{https://doi.org/10.1090/S1061-0022-09-01077-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272556200002}
Linking options:
  • https://www.mathnet.ru/eng/aa540
  • https://www.mathnet.ru/eng/aa/v20/i6/p30
  • This publication is cited in the following 29 articles:
    1. M. A. Dorodnyi, T. A. Suslina, “Porogovye approksimatsii funktsii ot faktorizovannogo operatornogo semeistva”, Algebra i analiz, 36:1 (2024), 95–161  mathnet
    2. M. A. Dorodnyi, “High-frequency homogenization of multidimensional hyperbolic equations”, Applicable Analysis, 2024, 1  crossref
    3. M. A. Dorodnyi, T. A. Suslina, “Homogenization of hyperbolic equations: operator estimates with correctors taken into account”, Funct. Anal. Appl., 57:4 (2023), 364–370  mathnet  crossref  crossref
    4. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. Kirill Cherednichenko, Igor Velčić, Josip Žubrinić, “Operator-norm resolvent estimates for thin elastic periodically heterogeneous rods in moderate contrast”, Calc. Var., 62:5 (2023)  crossref
    6. V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  mathnet  crossref
    7. T. A. Suslina, “Threshold approximations for the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 35:3 (2024), 537–570  mathnet  crossref
    8. Dorodnyi M.A. Suslina T.A., “Homogenization of a Non-Stationary Periodic Maxwell System in the Case of Constant Permeability”, J. Differ. Equ., 307 (2022), 348–388  crossref  mathscinet  isi
    9. Cherednichenko K. D'Onofrio S., “Operator-Norm Homogenisation Estimates For the System of Maxwell Equations on Periodic Singular Structures”, Calc. Var. Partial Differ. Equ., 61:2 (2022), 67  crossref  mathscinet  isi
    10. Cherednichenko K. Velcic I., “Sharp Operator-Norm Asymptotics For Thin Elastic Plates With Rapidly Oscillating Periodic Properties”, J. Lond. Math. Soc.-Second Ser., 105:3 (2022), 1634–1680  crossref  mathscinet  isi
    11. T. A. Suslina, “Homogenization of the Schrödinger-type equations: operator estimates with correctors”, Funct. Anal. Appl., 56:3 (2022), 229–234  mathnet  crossref  crossref
    12. M. A. Dorodnyi, T. A. Suslina, “Homogenization of nonstationary Maxwell system with constant magnetic permeability”, Funct. Anal. Appl., 55:2 (2021), 159–164  mathnet  crossref  crossref  isi  elib
    13. Dorodnyi M.A., “Operator Error Estimates For Homogenization of the Nonstationary Schrodinger-Type Equations: Sharpness of the Results”, Appl. Anal., 2021  crossref  isi
    14. Meshkova Yu.M., “On Operator Error Estimates For Homogenization of Hyperbolic Systems With Periodic Coefficients”, J. Spectr. Theory, 11:2 (2021), 587–660  crossref  mathscinet  isi
    15. T. A. Suslina, “Homogenization of the Higher-Order Hyperbolic Equations with Periodic Coefficients”, Lobachevskii J Math, 42:14 (2021), 3518  crossref
    16. M. Dorodnyi, T. A. Suslina, “Operator error estimates for homogenization of hyperbolic equations”, Funct. Anal. Appl., 54:1 (2020), 53–58  mathnet  crossref  crossref  mathscinet  isi  elib
    17. M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in Rd: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703  mathnet  crossref  mathscinet
    18. Cooper Sh. Savostianov A., “Homogenisation With Error Estimates of Attractors For Damped Semi-Linear Anisotropic Wave Equations”, Adv. Nonlinear Anal., 9:1 (2020), 745–787  crossref  mathscinet  isi
    19. Meshkova Yu.M., “On Homogenization of the First Initial-Boundary Value Problem For Periodic Hyperbolic Systems”, Appl. Anal., 99:9 (2020), 1528–1563  crossref  mathscinet  isi
    20. Yu. M. Meshkova, “On the Homogenization of Periodic Hyperbolic Systems”, Math. Notes, 105:6 (2019), 929–934  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:848
    Full-text PDF :225
    References:110
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025