Abstract:
Matrix periodic differential operators (DO's) A=A(x,D)A=A(x,D) in L2(Rd;Cn) are considered. The operators are assumed to admit factorization of the form A=X∗X, where X is a homogeneous first order DO. Let Aε=A(ε−1x,D), ε>0. The behavior of the solutions uε(x,τ) of the Cauchy problem for the Schrödinger equation i∂τuε=Aεuε, and also the behavior of those for the hyperbolic equation ∂2τuε=−Aεuε is studied as ε→0. Let u0 be the solution of the corresponding homogenized problem. Estimates of order ε are obtained for the L2(Rd;Cn)-norm of the difference uε−u0 for a fixed τ∈R. The estimates are uniform with respect to the norm of initial data in the Sobolev space Hs(Rd;Cn), where s=3 in the case of the Schrödinger equation and s=2 in the case of the hyperbolic equation. The dependence of the constants in estimates on the time τ is traced, which makes it possible to obtain qualified error estimates for small ε and large |τ|=O(ε−α) with appropriate α<1.
Citation:
M. Sh. Birman, T. A. Suslina, “Operator error estimates in the homogenization problem for nonstationary periodic equations”, Algebra i Analiz, 20:6 (2008), 30–107; St. Petersburg Math. J., 20:6 (2009), 873–928
\Bibitem{BirSus08}
\by M.~Sh.~Birman, T.~A.~Suslina
\paper Operator error estimates in the homogenization problem for nonstationary periodic equations
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 6
\pages 30--107
\mathnet{http://mi.mathnet.ru/aa540}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2530894}
\zmath{https://zbmath.org/?q=an:1206.35028}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 6
\pages 873--928
\crossref{https://doi.org/10.1090/S1061-0022-09-01077-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272556200002}
Linking options:
https://www.mathnet.ru/eng/aa540
https://www.mathnet.ru/eng/aa/v20/i6/p30
This publication is cited in the following 29 articles:
M. A. Dorodnyi, T. A. Suslina, “Porogovye approksimatsii funktsii ot faktorizovannogo operatornogo semeistva”, Algebra i analiz, 36:1 (2024), 95–161
M. A. Dorodnyi, “High-frequency homogenization of multidimensional hyperbolic equations”, Applicable Analysis, 2024, 1
M. A. Dorodnyi, T. A. Suslina, “Homogenization of hyperbolic equations: operator estimates with correctors taken into account”, Funct. Anal. Appl., 57:4 (2023), 364–370
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
Kirill Cherednichenko, Igor Velčić, Josip Žubrinić, “Operator-norm resolvent estimates for thin elastic periodically heterogeneous rods in moderate contrast”, Calc. Var., 62:5 (2023)
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
T. A. Suslina, “Threshold approximations for the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 35:3 (2024), 537–570
Dorodnyi M.A. Suslina T.A., “Homogenization of a Non-Stationary Periodic Maxwell System in the Case of Constant Permeability”, J. Differ. Equ., 307 (2022), 348–388
Cherednichenko K. D'Onofrio S., “Operator-Norm Homogenisation Estimates For the System of Maxwell Equations on Periodic Singular Structures”, Calc. Var. Partial Differ. Equ., 61:2 (2022), 67
Cherednichenko K. Velcic I., “Sharp Operator-Norm Asymptotics For Thin Elastic Plates With Rapidly Oscillating Periodic Properties”, J. Lond. Math. Soc.-Second Ser., 105:3 (2022), 1634–1680
T. A. Suslina, “Homogenization of the Schrödinger-type equations: operator estimates with correctors”, Funct. Anal. Appl., 56:3 (2022), 229–234
M. A. Dorodnyi, T. A. Suslina, “Homogenization of nonstationary Maxwell system with constant magnetic permeability”, Funct. Anal. Appl., 55:2 (2021), 159–164
Dorodnyi M.A., “Operator Error Estimates For Homogenization of the Nonstationary Schrodinger-Type Equations: Sharpness of the Results”, Appl. Anal., 2021
Meshkova Yu.M., “On Operator Error Estimates For Homogenization of Hyperbolic Systems With Periodic Coefficients”, J. Spectr. Theory, 11:2 (2021), 587–660
T. A. Suslina, “Homogenization of the Higher-Order Hyperbolic Equations with Periodic Coefficients”, Lobachevskii J Math, 42:14 (2021), 3518
M. Dorodnyi, T. A. Suslina, “Operator error estimates for homogenization of hyperbolic equations”, Funct. Anal. Appl., 54:1 (2020), 53–58
M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in Rd: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703
Cooper Sh. Savostianov A., “Homogenisation With Error Estimates of Attractors For Damped Semi-Linear Anisotropic Wave Equations”, Adv. Nonlinear Anal., 9:1 (2020), 745–787
Meshkova Yu.M., “On Homogenization of the First Initial-Boundary Value Problem For Periodic Hyperbolic Systems”, Appl. Anal., 99:9 (2020), 1528–1563
Yu. M. Meshkova, “On the Homogenization of Periodic Hyperbolic Systems”, Math. Notes, 105:6 (2019), 929–934