Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 2, Pages 19–42 (Mi aa504)  

This article is cited in 26 scientific papers (total in 26 papers)

Research Papers

Asymptotics for the solutions of elliptic systems with rapidly oscillating coefficients

D. I. Borisovab

a Bashkir State Pedagogical University
b Nuclear Physics Institute, Academy of Sciences of the Czech Republic
References:
Abstract: A singularly perturbed second order elliptic system in the entire space is treated. The coefficients of the systems oscillate rapidly and depend both on the slow and fast variables. The homogenized operator is obtained and, in the uniform norm sense, the leading terms of the asymptotic expansion are constructed for the resolvent of the operator described by the system. The convergence of the spectrum is established, and examples are given.
Keywords: Homogenization of differentiable operators, unbounded domain, fast and slow variables.
Received: 30.11.2006
English version:
St. Petersburg Mathematical Journal, 2009, Volume 20, Issue 2, Pages 175–191
DOI: https://doi.org/10.1090/S1061-0022-09-01043-7
Bibliographic databases:
Document Type: Article
MSC: 35B27
Language: Russian
Citation: D. I. Borisov, “Asymptotics for the solutions of elliptic systems with rapidly oscillating coefficients”, Algebra i Analiz, 20:2 (2008), 19–42; St. Petersburg Math. J., 20:2 (2009), 175–191
Citation in format AMSBIB
\Bibitem{Bor08}
\by D.~I.~Borisov
\paper Asymptotics for the solutions of elliptic systems with rapidly oscillating coefficients
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 2
\pages 19--42
\mathnet{http://mi.mathnet.ru/aa504}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2423995}
\zmath{https://zbmath.org/?q=an:1206.35029}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 2
\pages 175--191
\crossref{https://doi.org/10.1090/S1061-0022-09-01043-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267497500002}
Linking options:
  • https://www.mathnet.ru/eng/aa504
  • https://www.mathnet.ru/eng/aa/v20/i2/p19
  • This publication is cited in the following 26 articles:
    1. T. A. Suslina, “Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition”, Izv. Math., 88:4 (2024), 678–759  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  mathnet  crossref
    4. Senik N.N., “Homogenization For Locally Periodic Elliptic Operators”, J. Math. Anal. Appl., 505:2 (2022), 125581  crossref  mathscinet  isi  scopus
    5. M. M. Sirazhudinov, S. P. Dzhamaludinova, “Estimates for the Locally Periodic Homogenization of the Riemann–Hilbert Problem for a Generalized Beltrami Equation”, Diff Equat, 58:6 (2022), 771  crossref
    6. Meshkova Yu.M., “On Operator Error Estimates For Homogenization of Hyperbolic Systems With Periodic Coefficients”, J. Spectr. Theory, 11:2 (2021), 587–660  crossref  mathscinet  isi
    7. M. M. Sirazhudinov, L. M. Dzhabrailova, “Operatornye otsenki usredneniya zadachi Rimana-Gilberta dlya uravneniya Beltrami s lokalno-periodicheskim koeffitsientom”, Dagestanskie elektronnye matematicheskie izvestiya, 2021, no. 16, 51–61  mathnet  crossref
    8. M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054  mathnet  crossref  isi  elib
    9. N. N. Senik, “On homogenization for non-self-adjoint locally periodic elliptic operators”, Funct. Anal. Appl., 51:2 (2017), 152–156  mathnet  crossref  crossref  isi  elib
    10. Yu. M. Meshkova, T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients”, Funct. Anal. Appl., 51:3 (2017), 230–235  mathnet  crossref  crossref  isi  elib
    11. Yu. M. Meshkova, T. A. Suslina, “Homogenization of the first initial boundary value problem for parabolic systems: Operator error estimates”, St. Petersburg Math. J., 29:6 (2018), 935–978  mathnet  crossref  mathscinet  isi  elib
    12. Cardone G., “Waveguides With Fast Oscillating Boundary”, Nanosyst.-Phys. Chem. Math., 8:2 (2017), 160–165  crossref  mathscinet  isi
    13. Senik N.N., “Homogenization For Non-Self-Adjoint Periodic Elliptic Operators on An Infinite Cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898  crossref  mathscinet  zmath  isi  scopus
    14. S. E. Pastukhova, “Operator Estimates in Homogenization of Elliptic Systems of Equations”, J Math Sci, 226:4 (2017), 445  crossref
    15. V. V. Zhikov, S. E. Pastukhova, “Operator estimates in homogenization theory”, Russian Math. Surveys, 71:3 (2016), 417–511  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. Borisov D. Cardone G. Durante T., “Homogenization and norm-resolvent convergence for elliptic operators in a strip perforated along a curve”, Proc. R. Soc. Edinb. Sect. A-Math., 146:6 (2016), 1115–1158  crossref  mathscinet  zmath  isi  elib  scopus
    17. Meshkova Yu.M. Suslina T.A., “Two-parametric error estimates in homogenization of second-order elliptic systems in ^{ d }”, Appl. Anal., 95:7, SI (2016), 1413–1448  crossref  mathscinet  zmath  isi  elib  scopus
    18. T. F. Sharapov, “On the resolvent of multidimensional operators with frequently changing boundary conditions in the case of the homogenized Dirichlet condition”, Sb. Math., 205:10 (2014), 1492–1527  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. T. A. Suslina, “Homogenization of elliptic systems with periodic coefficients: operator error estimates in L2(Rd) with corrector taken into account”, St. Petersburg Math. J., 26:4 (2015), 643–693  mathnet  crossref  mathscinet  isi  elib  elib
    20. Borisov D. Cardone G. Faella L. Perugia C., “Uniform Resolvent Convergence for Strip with Fast Oscillating Boundary”, J. Differ. Equ., 255:12 (2013), 4378–4402  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:739
    Full-text PDF :258
    References:87
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025