Abstract:
In L2(Rd;Cn), consider a selfadjoint matrix elliptic second order differential operator Bε, 0<ε≤1, with periodic coefficients depending on x/ε. The principal part of the operator is given in a factorized form, the operator involves first and zero order terms. Approximation is found for the operator exponential e−isBε, s∈R, for small ε in the ( Hr→L2)-operator norm with a suitable r. The results are applied to study the behavior of the solution uε of the Cauchy problem for the nonstationary Schrödinger-type equation i∂suε=Bεuε+F. Applications to the magnetic Schrödinger equation and the two-dimensional Pauli equation with singular potentials are considered.
Citation:
M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, Algebra i Analiz, 31:6 (2019), 122–196; St. Petersburg Math. J., 31:6 (2020), 1001–1054
\Bibitem{Dor19}
\by M.~A.~Dorodnyi
\paper Homogenization of periodic Schrödinger-type equations, with lower order terms
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 6
\pages 122--196
\mathnet{http://mi.mathnet.ru/aa1677}
\elib{https://elibrary.ru/item.asp?id=45089947}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 6
\pages 1001--1054
\crossref{https://doi.org/10.1090/spmj/1632}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000587617700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097529341}
Linking options:
https://www.mathnet.ru/eng/aa1677
https://www.mathnet.ru/eng/aa/v31/i6/p122
This publication is cited in the following 3 articles:
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
Dorodnyi M.A., “Operator Error Estimates For Homogenization of the Nonstationary Schrodinger-Type Equations: Sharpness of the Results”, Appl. Anal., 2021
M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in Rd: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703