Citation:
A. A. Kukushkin, T. A. Suslina, “Homogenization of high order elliptic operators with periodic coefficients”, Algebra i Analiz, 28:1 (2016), 89–149; St. Petersburg Math. J., 28:1 (2017), 65–108
\Bibitem{KukSus16}
\by A.~A.~Kukushkin, T.~A.~Suslina
\paper Homogenization of high order elliptic operators with periodic coefficients
\jour Algebra i Analiz
\yr 2016
\vol 28
\issue 1
\pages 89--149
\mathnet{http://mi.mathnet.ru/aa1480}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3591067}
\elib{https://elibrary.ru/item.asp?id=26414172}
\transl
\jour St. Petersburg Math. J.
\yr 2017
\vol 28
\issue 1
\pages 65--108
\crossref{https://doi.org/10.1090/spmj/1439}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000390130800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85010378995}
Linking options:
https://www.mathnet.ru/eng/aa1480
https://www.mathnet.ru/eng/aa/v28/i1/p89
This publication is cited in the following 24 articles:
S. E. Pastukhova, “On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems”, Math. Notes, 114:3 (2023), 322–338
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
A. A. Raev, V. A. Slousch, T. A. Suslina, “Usrednenie odnomernogo periodicheskogo operatora chetvertogo poryadka s singulyarnym potentsialom”, Matematicheskie voprosy teorii rasprostraneniya voln. 53, Zap. nauchn. sem. POMI, 521, POMI, SPb., 2023, 212–239
A. A. Miloslova, T. A. Suslina, “Homogenization of the Higher-Order Parabolic Equations with Periodic Coefficients”, J Math Sci, 277:6 (2023), 959
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
S. E. Pastukhova, “Improved resolvent approximations in homogenization of second order operators with periodic coefficients”, Funct. Anal. Appl., 56:4 (2022), 310–319
S. E. Pastukhova, “Improved Approximations of Resolvents in Homogenization of Higher Order Operators. The Selfadjoint Case”, J Math Sci, 262:3 (2022), 312
S. E. Pastukhova, “Improved L2-approximation of resolvents in homogenization of fourth order operators”, St. Petersburg Math. J., 34:4 (2023), 611–634
S. E. Pastukhova, “Approximation of resolvents in homogenization of fourth-order elliptic operators”, Sb. Math., 212:1 (2021), 111–134
A. A. Miloslova, T. A. Suslina, “Usrednenie parabolicheskikh uravnenii vysokogo poryadka s periodicheskimi koeffitsientami”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 130–191
Ya. Xu, W. Niu, “Convergence rates in almost-periodic homogenization of higher-order elliptic systems”, Asymptotic Anal., 123:1-2 (2021), 95–137
V. A. Sloushch, T. A. Suslina, “Threshold approximations for the resolvent of a polynomial nonnegative operator pencil”, St. Petersburg Math. J., 33:2 (2022), 355–385
T. A. Suslina, “Homogenization of the Higher-Order Hyperbolic Equations with Periodic Coefficients”, Lobachevskii J Math, 42:14 (2021), 3518
V. A. Sloushch, T. A. Suslina, “Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account”, Funct. Anal. Appl., 54:3 (2020), 224–228
S. E. Pastukhova, “L2- Approximation of Resolvents in Homogenization of Higher Order Elliptic Operators”, J Math Sci, 251:6 (2020), 902
T. A. Suslina, “Homogenization of higher-order parabolic systems in a bounded domain”, Appl. Anal., 98:1-2, SI (2019), 3–31
W. Niu, Ya. Xu, “Uniform boundary estimates in homogenization of higher-order elliptic systems”, Ann. Mat. Pura Appl., 198:1 (2019), 97–128
T. A. Suslina, “Homogenization of the Neumann problem for higher order elliptic equations with periodic coefficients”, Complex Var. Elliptic Equ., 63:7-8, SI (2018), 1185–1215
W. Niu, Zh. Shen, Ya. Xu, “Convergence rates and interior estimates in homogenization of higher order elliptic systems”, J. Funct. Anal., 274:8 (2018), 2356–2398
W. Niu, Ya. Xu, “Convergence rates in homogenization of higher-order parabolic systems”, Discret. Contin. Dyn. Syst., 38:8 (2018), 4203–4229