Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2014, Volume 26, Issue 4, Pages 195–263 (Mi aa1395)  

This article is cited in 9 scientific papers (total in 9 papers)

Research Papers

Homogenization of elliptic systems with periodic coefficients: operator error estimates in L2(Rd) with corrector taken into account

T. A. Suslina

St. Petersburg State University, Faculty of Physics, St. Petersburg, Russia
Full-text PDF (519 kB) Citations (9)
References:
Received: 12.01.2014
English version:
St. Petersburg Mathematical Journal, 2015, Volume 26, Issue 4, Pages 643–693
DOI: https://doi.org/10.1090/spmj/1354
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. A. Suslina, “Homogenization of elliptic systems with periodic coefficients: operator error estimates in L2(Rd) with corrector taken into account”, Algebra i Analiz, 26:4 (2014), 195–263; St. Petersburg Math. J., 26:4 (2015), 643–693
Citation in format AMSBIB
\Bibitem{Sus14}
\by T.~A.~Suslina
\paper Homogenization of elliptic systems with periodic coefficients: operator error estimates in~$L_2(\mathbb R^d)$ with corrector taken into account
\jour Algebra i Analiz
\yr 2014
\vol 26
\issue 4
\pages 195--263
\mathnet{http://mi.mathnet.ru/aa1395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3289189}
\elib{https://elibrary.ru/item.asp?id=22834097}
\transl
\jour St. Petersburg Math. J.
\yr 2015
\vol 26
\issue 4
\pages 643--693
\crossref{https://doi.org/10.1090/spmj/1354}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000357044000006}
\elib{https://elibrary.ru/item.asp?id=24050827}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84931382634}
Linking options:
  • https://www.mathnet.ru/eng/aa1395
  • https://www.mathnet.ru/eng/aa/v26/i4/p195
  • This publication is cited in the following 9 articles:
    1. T. A. Suslina, “Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition”, Izv. Math., 88:4 (2024), 678–759  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. D. I. Borisov, A. I. Mukhametrakhimova, “Uniform convergence for problems with perforation alogn a given manifold and with a nonlinear Robin condition on the boundaries of cavities”, St. Petersburg Math. J., 35:4 (2024), 611–652  mathnet  crossref
    4. M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in Rd: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703  mathnet  crossref  mathscinet
    5. Yu. M. Meshkova, “Homogenization of periodic parabolic systems in the L2(Rd)-norm with the corrector taken into account”, St. Petersburg Math. J., 31:4 (2020), 675–718  mathnet  crossref  isi  elib
    6. M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054  mathnet  crossref  isi  elib
    7. N. N. Senik, “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898  crossref  mathscinet  zmath  isi  scopus
    8. N. N. Senik, “On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder”, Funct. Anal. Appl., 50:1 (2016), 71–75  mathnet  crossref  crossref  mathscinet  isi  elib
    9. Yu. M. Meshkova, T. A. Suslina, “Two-parametric error estimates in homogenization of second-order elliptic systems in Rd”, Appl. Anal., 95:7, SI (2016), 1413–1448  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:594
    Full-text PDF :150
    References:104
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025