Citation:
T. A. Suslina, “Homogenization of elliptic systems with periodic coefficients: operator error estimates in L2(Rd) with corrector taken into account”, Algebra i Analiz, 26:4 (2014), 195–263; St. Petersburg Math. J., 26:4 (2015), 643–693
\Bibitem{Sus14}
\by T.~A.~Suslina
\paper Homogenization of elliptic systems with periodic coefficients: operator error estimates in~$L_2(\mathbb R^d)$ with corrector taken into account
\jour Algebra i Analiz
\yr 2014
\vol 26
\issue 4
\pages 195--263
\mathnet{http://mi.mathnet.ru/aa1395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3289189}
\elib{https://elibrary.ru/item.asp?id=22834097}
\transl
\jour St. Petersburg Math. J.
\yr 2015
\vol 26
\issue 4
\pages 643--693
\crossref{https://doi.org/10.1090/spmj/1354}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000357044000006}
\elib{https://elibrary.ru/item.asp?id=24050827}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84931382634}
Linking options:
https://www.mathnet.ru/eng/aa1395
https://www.mathnet.ru/eng/aa/v26/i4/p195
This publication is cited in the following 9 articles:
T. A. Suslina, “Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition”, Izv. Math., 88:4 (2024), 678–759
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
D. I. Borisov, A. I. Mukhametrakhimova, “Uniform convergence for problems with perforation alogn a given manifold and with a nonlinear Robin condition on the boundaries of cavities”, St. Petersburg Math. J., 35:4 (2024), 611–652
M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in Rd: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703
Yu. M. Meshkova, “Homogenization of periodic parabolic systems in the L2(Rd)-norm with the corrector taken into account”, St. Petersburg Math. J., 31:4 (2020), 675–718
M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054
N. N. Senik, “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898
N. N. Senik, “On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder”, Funct. Anal. Appl., 50:1 (2016), 71–75
Yu. M. Meshkova, T. A. Suslina, “Two-parametric error estimates in homogenization of second-order elliptic systems in Rd”, Appl. Anal., 95:7, SI (2016), 1413–1448