Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 5, Pages 69–103 (Mi aa1205)  

This article is cited in 19 scientific papers (total in 19 papers)

Research Papers

Homogenization of periodic differential operators of high order

N. A. Veniaminov

St. Petersburg State University, Faculty of Physics, St. Petersburg, Russia
References:
Abstract: A periodic differential operator of the form $A_\varepsilon=(\mathbf D^p)^*g(\mathbf x/\varepsilon)\mathbf D^p$ is considered on $L_2(\mathbb R^d)$; here $g(x)$ is a positive definite symmetric tensor of order $2p$ periodic with respect to a lattice $\Gamma$. The behavior of the resolvent of the operator $A_\varepsilon$ as $\varepsilon\to0$ is studied. It is shown that the resolvent $(A_\varepsilon+I)^{-1}$ converges in the operator norm to the resolvent of the effective operator $A^0$ with constant coefficients. For the norm of the difference of resolvents, an estimate of order $\varepsilon$ is obtained.
Keywords: periodic differential operators, averaging, homogenization, threshold effect, operators of high order.
Received: 28.01.2010
English version:
St. Petersburg Mathematical Journal, 2011, Volume 22, Issue 5, Pages 751–775
DOI: https://doi.org/10.1090/S1061-0022-2011-01166-5
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. A. Veniaminov, “Homogenization of periodic differential operators of high order”, Algebra i Analiz, 22:5 (2010), 69–103; St. Petersburg Math. J., 22:5 (2011), 751–775
Citation in format AMSBIB
\Bibitem{Ven10}
\by N.~A.~Veniaminov
\paper Homogenization of periodic differential operators of high order
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 5
\pages 69--103
\mathnet{http://mi.mathnet.ru/aa1205}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2828827}
\zmath{https://zbmath.org/?q=an:1228.35031}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 5
\pages 751--775
\crossref{https://doi.org/10.1090/S1061-0022-2011-01166-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295022600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871426044}
Linking options:
  • https://www.mathnet.ru/eng/aa1205
  • https://www.mathnet.ru/eng/aa/v22/i5/p69
  • This publication is cited in the following 19 articles:
    1. S. E. Pastukhova, “On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems”, Math. Notes, 114:3 (2023), 322–338  mathnet  crossref  crossref  mathscinet
    2. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. A. A. Raev, V. A. Slousch, T. A. Suslina, “Usrednenie odnomernogo periodicheskogo operatora chetvertogo poryadka s singulyarnym potentsialom”, Matematicheskie voprosy teorii rasprostraneniya voln. 53, Zap. nauchn. sem. POMI, 521, POMI, SPb., 2023, 212–239  mathnet
    4. A. A. Miloslova, T. A. Suslina, “Homogenization of the Higher-Order Parabolic Equations with Periodic Coefficients”, J Math Sci, 277:6 (2023), 959  crossref
    5. V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  mathnet  crossref
    6. S. E. Pastukhova, “Improved $L^2$-approximation of resolvents in homogenization of fourth order operators”, St. Petersburg Math. J., 34:4 (2023), 611–634  mathnet  crossref  mathscinet
    7. S. E. Pastukhova, “Approximation of resolvents in homogenization of fourth-order elliptic operators”, Sb. Math., 212:1 (2021), 111–134  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. A. A. Miloslova, T. A. Suslina, “Usrednenie parabolicheskikh uravnenii vysokogo poryadka s periodicheskimi koeffitsientami”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 130–191  mathnet  crossref
    9. Tewary V., “Combined Effects of Homogenization and Singular Perturbations: a Bloch Wave Approach”, Netw. Heterog. Media, 16:3 (2021), 427–458  crossref  mathscinet  isi
    10. T. A. Suslina, “Homogenization of the Higher-Order Hyperbolic Equations with Periodic Coefficients”, Lobachevskii J Math, 42:14 (2021), 3518  crossref
    11. V. A. Sloushch, T. A. Suslina, “Threshold approximations for the resolvent of a polynomial nonnegative operator pencil”, St. Petersburg Math. J., 33:2 (2022), 355–385  mathnet  crossref
    12. V. A. Sloushch, T. A. Suslina, “Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account”, Funct. Anal. Appl., 54:3 (2020), 224–228  mathnet  crossref  crossref  mathscinet  isi  elib
    13. S. E. Pastukhova, “L2- Approximation of Resolvents in Homogenization of Higher Order Elliptic Operators”, J Math Sci, 251:6 (2020), 902  crossref
    14. Suslina T.A., “Homogenization of Higher-Order Parabolic Systems in a Bounded Domain”, Appl. Anal., 98:1-2, SI (2019), 3–31  crossref  mathscinet  zmath  isi  scopus
    15. Suslina T.A., “Homogenization of the Neumann Problem For Higher Order Elliptic Equations With Periodic Coefficients”, Complex Var. Elliptic Equ., 63:7-8, SI (2018), 1185–1215  crossref  mathscinet  zmath  isi  scopus
    16. T. A. Suslina, “Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients”, St. Petersburg Math. J., 29:2 (2018), 325–362  mathnet  crossref  isi  elib
    17. A. A. Kukushkin, T. A. Suslina, “Homogenization of high order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 28:1 (2017), 65–108  mathnet  crossref  mathscinet  isi  elib
    18. S. E. Pastukhova, “Homogenization estimates of operator type for fourth order elliptic equations”, St. Petersburg Math. J., 28:2 (2017), 273–289  mathnet  crossref  mathscinet  isi  elib
    19. Pastukhova S.E., “Estimates in homogenization of higher-order elliptic operators”, Appl. Anal., 95:7, SI (2016), 1449–1466  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:553
    Full-text PDF :194
    References:80
    First page:11
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025