Аннотация:
Возникновение конвекции в пористом анизотропном прямоугольнике, заполненном теплопроводной жидкостью и подогреваемом снизу, анализируется на основе модели Дарси–Буссинеска. Показано, что имеются комбинации управляющих параметров, при которых система обладает нетривиальной косимметрией, и от состояния механического равновесия ответвляется однопараметрическое семейство стационарных конвективных режимов. Развиты конечно-разностные аппроксимации двумерных уравнений фильтрационной конвекции, которые сохраняют свойство косимметрии исходной системы. Представлены результаты численных экспериментов по формированию режимов, составляющих семейство, и разрушению семейства при аппроксимациях, не наследующих свойство косимметрии. Библ. 16. Фиг. 5. Табл. 3.
Образец цитирования:
М. А. Абделхафиз, В. Г. Цибулин, “Численное моделирование конвективных движений в анизотропной пористой среде и сохранение косимметрии”, Ж. вычисл. матем. и матем. физ., 57:10 (2017), 1734–1747; Comput. Math. Math. Phys., 57:10 (2017), 1706–1719
Е. Б. Соболева, “Численное моделирование фильтрационных концентрационно-конвективных течений с контрастом вязкости”, Ж. вычисл. матем. и матем. физ., 62:11 (2022), 1927–1939; E. B. Soboleva, “Numerical simulation of haline–convective flows with viscosity contrast in a porous medium”, Comput. Math. Math. Phys., 62:11 (2022), 1942–1954
Д. Ха, В. Г. Цибулин, “Мультистабильные сценарии для дифференциальных уравнений, описывающих динамику системы хищников и жертв”, Компьютерные исследования и моделирование, 12:6 (2020), 1451–1466
Е. Б. Соболева, “Метод численного моделирования концентрационно-конвективных течений в пористых средах в приложении к задачам геологии”, Ж. вычисл. матем. и матем. физ., 59:11 (2019), 1961–1972; E. B. Soboleva, “A method for numerical simulation of haline convective flows in porous media as applied to geology”, Comput. Math. Math. Phys., 59:11 (2019), 1893–1903
М. А. Абделхафиз, В. Г. Цибулин, “Моделирование анизотропной конвекции бинарной жидкости, насыщающей пористую среду”, Компьютерные исследования и моделирование, 10:6 (2018), 801–816
M. A. Abdelhafez, V. G. Tsybulin, “Anisotropic problem of Darcy convection: family of steady flows and its disintegration during the destruction of cosymmetry”, Fluid Dyn., 53:6 (2018), 738–749