Loading [MathJax]/jax/output/CommonHTML/jax.js
Успехи математических наук
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



УМН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Успехи математических наук, 2011, том 66, выпуск 6(402), страницы 37–122
DOI: https://doi.org/10.4213/rm9448
(Mi rm9448)
 

Эта публикация цитируется в 63 научных статьях (всего в 63 статьях)

Аппроксимации Паде, непрерывные дроби и ортогональные многочлены

А. И. Аптекаревa, В. И. Буслаевb, А. Мартинес-Финкельштейнc, С. П. Суетинb

a Институт прикладной математики им. М. В. Келдыша РАН, г. Москва
b Математический институт им. В. А. Стеклова РАН
c University of Almeria, Spain
Список литературы:
Аннотация: В работе дается обзор результатов, составляющих основу современной теории сходимости аппроксимаций Паде.
Библиография: 204 названия.
Ключевые слова: рациональные приближения, непрерывные дроби, ортогональные многочлены, аппроксимации Паде, аппроксимации Эрмита–Паде, эффективное аналитическое продолжение, сходимость по емкости, асимптотика полюсов, локализация особенностей, прямые задачи, обратные задачи.
Поступила в редакцию: 03.10.2011
Англоязычная версия:
Russian Mathematical Surveys, 2011, Volume 66, Issue 6, Pages 1049–1131
DOI: https://doi.org/10.1070/RM2011v066n06ABEH004770
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.53
MSC: Primary 41A21; Secondary 30B70, 42C05
Образец цитирования: А. И. Аптекарев, В. И. Буслаев, А. Мартинес-Финкельштейн, С. П. Суетин, “Аппроксимации Паде, непрерывные дроби и ортогональные многочлены”, УМН, 66:6(402) (2011), 37–122; Russian Math. Surveys, 66:6 (2011), 1049–1131
Цитирование в формате AMSBIB
\RBibitem{AptBusMar11}
\by А.~И.~Аптекарев, В.~И.~Буслаев, А.~Мартинес-Финкельштейн, С.~П.~Суетин
\paper Аппроксимации Паде, непрерывные~дроби и~ортогональные многочлены
\jour УМН
\yr 2011
\vol 66
\issue 6(402)
\pages 37--122
\mathnet{http://mi.mathnet.ru/rm9448}
\crossref{https://doi.org/10.4213/rm9448}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2963451}
\zmath{https://zbmath.org/?q=an:1242.41014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..66.1049A}
\elib{https://elibrary.ru/item.asp?id=20423326}
\transl
\jour Russian Math. Surveys
\yr 2011
\vol 66
\issue 6
\pages 1049--1131
\crossref{https://doi.org/10.1070/RM2011v066n06ABEH004770}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000301121000002}
\elib{https://elibrary.ru/item.asp?id=18036049}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84859042945}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rm9448
  • https://doi.org/10.4213/rm9448
  • https://www.mathnet.ru/rus/rm/v66/i6/p37
  • Эта публикация цитируется в следующих 63 статьяx:
    1. С. П. Суетин, “О скалярных подходах к изучению предельного распределения нулей многочленов Эрмита–Паде для системы Никишина”, УМН, 80:1(481) (2025), 85–152  mathnet  crossref
    2. А. В. Комлов, Р. В. Пальвелев, “Нули дискриминантов, построенных по полиномам Эрмита–Паде алгебраической функции, и их связь с точками ветвления”, Матем. сб., 215:12 (2024), 56–88  mathnet  crossref  mathscinet  adsnasa; A. V. Komlov, R. V. Palvelev, “Zeros of discriminants constructed from Hermite–Padé polynomials of an algebraic function and their relation to branch points”, Sb. Math., 215:12 (2024), 1633–1665  crossref  isi
    3. А. П. Старовойтов, Е. П. Кечко, Т. М. Оснач, “Существование и единственность совместных аппроксимаций Эрмита – Фурье”, ПФМТ, 2023, № 2(55), 68–73  mathnet  crossref
    4. V. P. Shapeev, “Solution of the Cauchy problem for ordinary differential equations using the collocation and least squares method with the Pade approximation”, Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 16:4 (2023), 71–83  mathnet  crossref
    5. Venkat Abhignan, “Extrapolation from hypergeometric functions, continued functions and Borel-Leroy transformation; Resummation of perturbative renormalization functions from field theories”, J Stat Phys, 190:5 (2023)  crossref
    6. Venkat Abhignan, R. Sankaranarayanan, “Continued functions and critical exponents: tools for analytical continuation of divergent expressions in phase transition studies”, Eur. Phys. J. B, 96:3 (2023)  crossref
    7. С. П. Суетин, “Прямое доказательство теоремы Шталя для некоторого класса алгебраических функций”, Матем. сб., 213:11 (2022), 102–117  mathnet  crossref  mathscinet  zmath  adsnasa; S. P. Suetin, “A direct proof of Stahl's theorem for a generic class of algebraic functions”, Sb. Math., 213:11 (2022), 1582–1596  crossref  isi
    8. Gökçe Başar, Gerald V. Dunne, Zelong Yin, “Uniformizing Lee-Yang singularities”, Phys. Rev. D, 105:10 (2022)  crossref
    9. Н. Р. Икономов, С. П. Суетин, “Структура наттолловского разбиения для некоторого класса четырехлистных римановых поверхностей”, Тр. ММО, 83, № 1, МЦНМО, М., 2022, 37–61  mathnet
    10. А. П. Старовойтов, Н. В. Рябченко, “О детерминантных представлениях многочленов Эрмита–Паде”, Тр. ММО, 83, № 1, МЦНМО, М., 2022, 17–35  mathnet
    11. А. И. Аптекарев, М. Л. Ятцелев, “Гипотеза Гончара–Чудновских и функциональный аналог теоремы Туэ–Зигеля–Рота”, Тр. ММО, 83, № 2, МЦНМО, М., 2022, 297–318  mathnet
    12. С. П. Суетин, “Два примера, связанные со свойствами дискретных мер”, Матем. заметки, 110:4 (2021), 592–597  mathnet  crossref  mathscinet; S. P. Suetin, “Two Examples Related to Properties of Discrete Measures”, Math. Notes, 110:4 (2021), 578–582  crossref  isi  elib
    13. А. В. Комлов, “Полиномиальная m-система Эрмита–Паде для мероморфных функций на компактной римановой поверхности”, Матем. сб., 212:12 (2021), 40–76  mathnet  crossref  mathscinet  zmath  adsnasa; A. V. Komlov, “The polynomial Hermite-Padé m-system for meromorphic functions on a compact Riemann surface”, Sb. Math., 212:12 (2021), 1694–1729  crossref  isi
    14. Hagstrom T., Appelo D., Zhang L., 2021 International Applied Computational Electromagnetics Society Symposium (Aces), IEEE, 2021  crossref  isi
    15. A. V. Komlov, “Polynomial Hermite–Padé m-system and reconstruction of the values of algebraic functions”, Trends Math., 12 (2021), 113–121  mathnet  crossref
    16. A. P. Staravoitov, N. V. Ryabchenko, “Uniqueness of the solutions of the Hermite – Pade problems”, Vescì Akademìì navuk Belarusì. Seryâ fizika-matematyčnyh navuk, 55:4 (2020), 445  crossref
    17. Karabut E.A., Petrov A.G., Zhuravleva E.N., “Semi-Analytical Study of the Voinovs Problem”, Eur. J. Appl. Math., 30:2 (2019), 298–337  crossref  mathscinet  isi  scopus
    18. Martinez-Finkelshtein A., Silva G.L.F., “Critical Measures For Vector Energy: Asymptotics of Non-Diagonal Multiple Orthogonal Polynomials For a Cubic Weight”, Adv. Math., 349 (2019), 246–315  crossref  mathscinet  isi  scopus
    19. Doron S. Lubinsky, Applied and Numerical Harmonic Analysis, Topics in Classical and Modern Analysis, 2019, 241  crossref
    20. Indah Nur Pratiwi, Mohammad Syamsu Rosid, Humbang Purba, Hadiyanto, Budi Warsito, Maryono, “Reducing Residual Moveout for Long Offset Data in VTI Media Using Padé Approximation”, E3S Web Conf., 125 (2019), 15005  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Статистика просмотров:
    Страница аннотации:2260
    PDF русской версии:1517
    PDF английской версии:129
    Список литературы:148
    Первая страница:73
     
      Обратная связь:
    math-net2025_04@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025