Аннотация:
Дается анализ двумерного атома водорода в эллиптических координатах.
Методом разделения переменных проблема сведена к решению
уравнения Айнса в комплексной плоскости при определенных граничных
условиях. Показано, что найденные решения переходят при R→0
и R→∞ (R – параметр, задающий эллиптические координаты) соответственно в полярный и параболический базисы. Приведен явный вид
эллиптического базиса для низших квантовых состояний.
Образец цитирования:
Л. Г. Мардоян, Г. С. Погосян, А. Н. Сисакян, В. М. Тер-Антонян, “Двумерный атом водорода. I. Эллиптический базис”, ТМФ, 61:1 (1984), 99–117; Theoret. and Math. Phys., 61:1 (1984), 1021–1034
V. V. Skobelev, V. P. Krasin, S. V. Kopylov, “On the Question of Spatial Transitions in a System of Atoms”, Russ Phys J, 64:1 (2021), 17
V. V. Skobelev, “Spatial Electron Transitions in a Hydrogen-Like Atom with Photon Emission”, Russ Phys J, 64:7 (2021), 1328
V. A. Harutyunyan, H. A. Sarkisyan, “Monovalent and Divalent Impurity States in a Semiconductor Nanoplatelets”, J. Contemp. Phys., 56:3 (2021), 228
V. V. Skobelev, “Characteristics of a Two-Dimensional Hydrogen-like Atom”, Russ Phys J, 61:2 (2018), 312
V. V. Skobelev, “Two-Dimensional Hydrogen-like Atom: Photon Emission and Relativistic Energy Corrections”, J. Exp. Theor. Phys., 126:2 (2018), 183
V. V. Skobelev, “On the Question of the Existence of Two-Dimensional Multi-Electron Atoms”, Russ Phys J, 61:7 (2018), 1294
V. V. Skobelev, “Can “Two-” and “One-Dimensional” Multielectron Atoms Exist?”, J. Exp. Theor. Phys., 126:5 (2018), 645
V. V. Skobelev, “On the Energy of a “Two-Dimensional” Two-Electron Atom”, J. Exp. Theor. Phys., 125:6 (2017), 1058
В. В. Пупышев, “Двумерное кулоновское рассеяние квантовой частицы: волновые функции и функции Грина”, ТМФ, 186:2 (2016), 252–271; V. V. Pupyshev, “Two-dimensional Coulomb scattering of a quantum particle: Wave functions and Green's functions”, Theoret. and Math. Phys., 186:2 (2016), 213–230
S. Aghaei, A. Chenaghlou, “Solution of the Dirac equation with some superintegrable potentials by the quadratic algebra approach”, Int. J. Mod. Phys. A, 29:06 (2014), 1450028
Ernie G. Kalnins, Willard Miller, George S. Pogosyan, The IMA Volumes in Mathematics and its Applications, 144, Symmetries and Overdetermined Systems of Partial Differential Equations, 2008, 431
E.M. Kazaryan, L.S. Petrosyan, H.A. Sarkisyan, “Hidden symmetry and excitonic transitions in the quantum well”, Physica E: Low-dimensional Systems and Nanostructures, 40:3 (2008), 536
E. G. Kalnins, J. M. Kress, W. Miller, “Nondegenerate three-dimensional complex Euclidean superintegrable systems and algebraic varieties”, Journal of Mathematical Physics, 48:11 (2007)
E G Kalnins, W Miller, S Post, “Wilson polynomials and the generic superintegrable system on the 2-sphere”, J. Phys. A: Math. Theor., 40:38 (2007), 11525
E G Kalnins, J M Kress, W Miller, “Nondegenerate 2D complex Euclidean superintegrable systems and algebraic varieties”, J. Phys. A: Math. Theor., 40:13 (2007), 3399
Д. И. Бондарь, М. Гнатич, В. Ю. Лазур, “Двумерная задача двух кулоновских центров при малых межцентровых расстояниях”, ТМФ, 148:2 (2006), 269–287; D. I. Bondar, M. Gnatich, V. Yu. Lazur, “Two-dimensional problem of two Coulomb centers at small intercenter distances”, Theoret. and Math. Phys., 148:2 (2006), 1100–1116
E. G. Kalnins, W. Miller, G. S. Pogosyan, “Exact and quasiexact solvability of second-order superintegrable quantum systems: I. Euclidean space preliminaries”, Journal of Mathematical Physics, 47:3 (2006)
E. G. Kalnins, J. M. Kress, W. Miller, “Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory”, Journal of Mathematical Physics, 46:5 (2005)
Pogosyan, G, “Separation of variables and Lie algebra contractions. Applications to special functions”, Physics of Particles and Nuclei, 33 (2002), S123
E. G. Kalnins, J. M. Kress, W. Miller, G. S. Pogosyan, “Complete sets of invariants for dynamical systems that admit a separation of variables”, Journal of Mathematical Physics, 43:7 (2002), 3592