Аннотация:
Рассматриваются одномерные спиновые системы со случайным гамильтонианом H=β2∑x1≠x2ε(x1,x2)φ(x1)φ(x2)|x1−x2|α, где ε(x1,x2) – случайные величины, независимые для различных пар (x1,x2), Eε(x1,x2)=0. Показано, что при α>3/2 в системе с вероятностью 1 отсутствуют фазовые переходы.
Образец цитирования:
К. М. Ханин, “Отсутствие фазовых переходов в одномерных дальнодействующих спиновых системах со случайным гамильтонианом”, ТМФ, 43:2 (1980), 253–260; Theoret. and Math. Phys., 43:2 (1980), 445–449
Xinghai Zhang, Matthew S. Foster, “Magnetic instability and spin-glass order beyond the Anderson-Mott transition in interacting power-law random banded matrix fermions”, Phys. Rev. B, 110:15 (2024)
Jorge Littin, Cesar Maldonado, “Loss of Stability in a 1D Spin Model with a Long-Range Random Hamiltonian”, J Stat Phys, 191:1 (2023)
N. Read, “Complexity as information in spin-glass Gibbs states and metastates: Upper bounds at nonzero temperature and long-range models”, Phys. Rev. E, 105:5 (2022)
N. Read, “Triviality of the ground-state metastate in long-range Ising spin glasses in one dimension”, Phys. Rev. E, 97:1 (2018)
Jorge Littin, Pierre Picco, “Quasi-additive estimates on the Hamiltonian for the one-dimensional long range Ising model”, Journal of Mathematical Physics, 58:7 (2017)
Bogusław Zegarlinski, Mathematical Aspects of Spin Glasses and Neural Networks, 1998, 289
M Campanino, A C D van Enter, “Weak versus strong uniqueness of Gibbs measures: a regular short-range example”, J. Phys. A: Math. Gen., 28:2 (1995), L45
Boguslav Zegarlinski, “Interactions and pressure functionals for disordered lattice systems”, Commun.Math. Phys., 139:2 (1991), 305
Boguslav Zegarlinski, “On equivalence of spin and field pictures of lattice systems”, J Stat Phys, 59:5-6 (1990), 1511
A C D van Enter, “One-dimensional spin glasses, uniqueness and cluster properties”, J. Phys. A: Math. Gen., 21:8 (1988), 1781
Aernout C. D. van Enter, “Upper bounds on correlation decay for one-dimensional long-range spin-glass models”, J Stat Phys, 47:5-6 (1987), 905
B. Zegarlinski, “Spin glasses with long-range interaction at high temperatures”, J Stat Phys, 47:5-6 (1987), 911
M. Campanino, E. Olivieri, A. C. D. van Enter, “One dimensional spin glasses with potential decay 1/r 1+g . Absence of phase transitions and cluster properties”, Commun.Math. Phys., 108:2 (1987), 241
M. Campanino, E. Olivieri, “One-dimensional random Ising systems with interaction decayr ?(1+?): A convergent cluster expansion”, Commun.Math. Phys., 111:4 (1987), 555
Aernout C. D. van Enter, Lecture Notes in Physics, 257, Statistical Mechanics and Field Theory: Mathematical Aspects, 1986, 75
Aernout C. D. van Enter, “Bounds on correlation decay for long-range vector spin glasses”, J Stat Phys, 41:1-2 (1985), 315
A. C. D. van Enter, J. Fröhlich, “Absence of symmetry breaking forN-vector spin glass models in two dimensions”, Commun.Math. Phys., 98:3 (1985), 425
A. C. D. van Enter, J. L. van Hemmen, “Absence of phase transitions in certain one-dimensional long-range random systems”, J Stat Phys, 39:1-2 (1985), 1
И. В. Николаев, “Случайные кластерные разложения в высокотемпературной области”, ТМФ, 60:3 (1984), 468–475; I. V. Nikolaev, “Random cluster expansions in the high-temperature region”, Theoret. and Math. Phys., 60:3 (1984), 945–950
P. Picco, “Upper bound on the decay of correlations in the plane rotator model with long-range random interaction”, J Stat Phys, 36:3-4 (1984), 489