Аннотация:
In this paper, we examine the role that q-orthogonal polynomials can play in the application of Bailey pairs. The use of specializations of q-orthogonal polynomials reveals new instances of mock theta functions.
Образец цитирования:
George E. Andrews, “q-Orthogonal polynomials, Rogers–Ramanujan identities, and mock theta functions”, Теория чисел, алгебра и анализ, Сборник статей. К 75-летию со дня рождения профессора Анатолия Алексеевича Карацубы, Труды МИАН, 276, МАИК «Наука/Интерпериодика», М., 2012, 27–38; Proc. Steklov Inst. Math., 276 (2012), 21–32
Eric T. Mortenson, Ankit Sahu, “Expressing q-series in terms of building blocks of Hecke-type double-sums”, Int. J. Number Theory, 19:06 (2023), 1429
Lovejoy J., “Bailey Pairs and Indefinite Quadratic Forms, II. False Indefinite Theta Functions”, Res. Number Theory, 8:2 (2022), 24
Su-Ping Cui, Nancy S.S. Gu, Qing-Hu Hou, Chen-Yang Su, “Three-parameter mock theta functions”, Journal of Mathematical Analysis and Applications, 515:2 (2022), 126459
Qiuxia Hu, Bilal Khan, Serkan Araci, Mehmet Acikgoz, “New double-sum expansions for certain Mock theta functions”, MATH, 7:9 (2022), 17225
Liu Zh.-G., “On the Askey-Wilson Polynomials and a Q-Beta Integral”, Proc. Amer. Math. Soc., 149:11 (2021), 4639–4648
Cui S.-P., Gu N.S.S., “Some New Mock Theta Functions”, Adv. Appl. Math., 131 (2021), 102267
Patkowski A.E., “A General Double Sum Identity, Mock Theta Functions, and Bailey Pairs”, Acta Arith., 198:4 (2021), 377–385
Jia Z., Khan B., Hu Q., Niu D., “Applications of Generalized Q-Difference Equations For General Q-Polynomials”, Symmetry-Basel, 13:7 (2021), 1222
Andrews G.E., Berndt B.C., Chan S.H., Kim S., Malik A., “Four Identities For Third Order Mock Theta Functions”, Nagoya Math. J., 239 (2020), PII S0027763018000351, 173–204