|
On a Transformation of Triple q-Series and Rogers–Hecke Type Series
Zhi-Guo Liu School of Mathematical Sciences, Key Laboratory of MEA (Ministry of Education) & Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, P.R. China
Аннотация:
Using the method of the q-exponential differential operator, we give an extension of the Sears 4ϕ3 transformation formula. Based on this extended formula and a q-series expansion formula for an analytic function around the origin, we present a transformation formula for triple q-series, which includes several interesting special cases, especially a double q-series summation formula. Some applications of this transformation formula to Rogers–Hecke type series are discussed. More than 100 Rogers–Hecke type identities including Andrews' identities for the sums of three squares and the sums of three triangular numbers are obtained.
Ключевые слова:
q-partial differential equation, double q-series summation, triple q-hypergeometric series, q-exponential differential operator, Rogers–Hecke type series
Поступила: 26 января 2024 г.; в окончательном варианте 15 сентября 2024 г.; опубликована 4 октября 2024 г.
Образец цитирования:
Zhi-Guo Liu, “On a Transformation of Triple q-Series and Rogers–Hecke Type Series”, SIGMA, 20 (2024), 086, 37 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma2088 https://www.mathnet.ru/rus/sigma/v20/p86
|
Статистика просмотров: |
Страница аннотации: | 41 | PDF полного текста: | 14 | Список литературы: | 11 |
|