Аннотация:
We prove that every Riemannian metric on the 2-disc such that all its geodesics are minimal is a minimal filling of its boundary (within the class of fillings homeomorphic to the disc). This improves an earlier result of the author by removing the assumption that the boundary is convex. More generally, we prove this result for Finsler metrics with area defined as the two-dimensional Holmes–Thompson volume. This implies a generalization of Pu's isosystolic inequality to Finsler metrics, both for the Holmes–Thompson and Busemann definitions of the Finsler area.
Образец цитирования:
S. V. Ivanov, “Filling minimality of Finslerian 2-discs”, Современные проблемы математики, Сборник статей. К 75-летию Института, Труды МИАН, 273, МАИК «Наука/Интерпериодика», М., 2011, 192–206; Proc. Steklov Inst. Math., 273 (2011), 176–190
\RBibitem{Iva11}
\by S.~V.~Ivanov
\paper Filling minimality of Finslerian 2-discs
\inbook Современные проблемы математики
\bookinfo Сборник статей. К~75-летию Института
\serial Труды МИАН
\yr 2011
\vol 273
\pages 192--206
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3284}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2893545}
\zmath{https://zbmath.org/?q=an:1241.53062}
\elib{https://elibrary.ru/item.asp?id=16456345}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 273
\pages 176--190
\crossref{https://doi.org/10.1134/S0081543811040079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295982500007}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3284
https://www.mathnet.ru/rus/tm/v273/p192
Эта публикация цитируется в следующих 11 статьяx:
Sergey Avvakumov, Alexey Balitskiy, Alfredo Hubard, Roman Karasev, “Systolic inequalities for the number of vertices”, J. Topol. Anal., 16:06 (2024), 955
Creutz P., “Majorization By Hemispheres and Quadratic Isoperimetric Constants”, Trans. Am. Math. Soc., 373:3 (2020), 1577–1596
Kolomoitsev Yu. Tikhonov S., “Properties of Moduli of Smoothness in l-P(R-D)”, J. Approx. Theory, 257 (2020), 105423
Sabourau S., Yassine Z., “A Systolic-Like Extremal Genus Two Surface”, J. Topol. Anal., 11:3 (2019), 721–738
Kim Ch.-W., “Blaschke Finsler Metrics on Spheres”, Int. J. Geom. Methods Mod. Phys., 16:9 (2019), 1950137
Lytchak A., Wenger S., “Intrinsic Structure of Minimal Discs in Metric Spaces”, Geom. Topol., 22:1 (2018), 591–644
Lytchak A. Wenger S., “Isoperimetric Characterization of Upper Curvature Bounds”, Acta Math., 221:1 (2018), 159–202
Paiva J.C.A., Balacheff F., Tzanev K., “Isosystolic inequalities for optical hypersurfaces”, Adv. Math., 301 (2016), 934–972
Sabourau S., Yassine Z., “Optimal systolic inequalities on Finsler Möbius bands”, J. Topol. Anal., 8:2 (2016), 349–372