Аннотация:
Получены достаточные условия, близкие к необходимым, существования (единственного для σ>0, β>0) решения модифицированной задачи Стефана на малом временном интервале.
Образец цитирования:
Е. В. Радкевич, “Об условиях существования классического решения модифицированной задачи Стефана (закон Гиббса–Томсона)”, Матем. сб., 183:2 (1992), 77–101; E. V. Radkevich, “On conditions for the existence of a classical solution of the modified Stefan problem (the Gibbs–Thomson law)”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 221–246
\RBibitem{Rad92}
\by Е.~В.~Радкевич
\paper Об~условиях существования классического решения модифицированной задачи Стефана (закон Гиббса--Томсона)
\jour Матем. сб.
\yr 1992
\vol 183
\issue 2
\pages 77--101
\mathnet{http://mi.mathnet.ru/sm1468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1166953}
\zmath{https://zbmath.org/?q=an:0772.35087}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1993SbMat..75..221R}
\transl
\by E.~V.~Radkevich
\paper On conditions for the existence of a~classical solution of the modified Stefan problem (the Gibbs--Thomson law)
\jour Russian Acad. Sci. Sb. Math.
\yr 1993
\vol 75
\issue 1
\pages 221--246
\crossref{https://doi.org/10.1070/SM1993v075n01ABEH003381}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LG75100013}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sm1468
https://www.mathnet.ru/rus/sm/v183/i2/p77
Эта публикация цитируется в следующих 38 статьяx:
Vladimir Danilov, Roman Gaydukov, Vadim Kretov, Heat and Mass Transfer, Mathematical Modeling of Emission in Small-Size Cathode, 2020, 59
M. Park, M. V. Tretyakov, “Stochastic Resin Transfer Molding Process”, SIAM/ASA J. Uncertainty Quantification, 5:1 (2017), 1110
C. Choquet, M. M. Diédhiou, C. Rosier, “Derivation of a Sharp-Diffuse Interfaces Model for Seawater Intrusion in a Free Aquifer. Numerical Simulations”, SIAM J. Appl. Math., 76:1 (2016), 138
Sergey P. Degtyarev, “On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions”, Evolution Equations & Control Theory, 4:4 (2015), 391
A.S. Sarsekeyev, “Investigation of the Solvability in a Weighted Hölder Spaces of the Linearized Problem”, Asian J. of Scientific Research, 8:4 (2015), 490
Pruess J. Simonett G. Zacher R., “Qualitative Behavior of Solutions for Thermodynamically Consistent Stefan Problems with Surface Tension”, Arch. Ration. Mech. Anal., 207:2 (2013), 611–667
Ch. Eck, B. Jadamba, P. Knabner, “Error Estimates for a Finite Element Discretization of a Phase Field Model for Mixtures”, SIAM J Numer Anal, 47:6 (2010), 4429
В. И. Войтицкий, Н. Д. Копачевский, П. А. Старков, “Многокомпонентные задачи сопряжения и вспомогательные абстрактные краевые задачи”, Труды Крымской осенней математической школы-симпозиума, СМФН, 34, РУДН, М., 2009, 5–44; V. I. Voititskiy, N. D. Kopachevskiy, P. A. Starkov, “Multicomponent conjugation problems and auxiliary abstract boundary-value problems”, Journal of Mathematical Sciences, 170:2 (2010), 131–172
Kopachevsky N.D., Voytitsky V.I., “On the Modified Spectral Stefan Problem and its Abstract Generalizations”, Modern Analysis and Applications: Mark Krein Centenary Conference, Vol 2, Operator Theory Advances and Applications, 191, eds. Adamyan V., Berezansky Y., Gohberg I., Gorbachuk M., Gorbachuk V., Kochubei A., Langer H., Popov G., Birkhauser Verlag Ag, 2009, 381–394
Pruess J., Simonett G., “Stability of Equilibria for the Stefan Problem with Surface Tension”, SIAM J. Math. Anal., 40:2 (2008), 675–698
Eck C., “Homogenization of a Phase Field Model for Binary Mixtures”, Multiscale Model. Simul., 3:1 (2005), 1–27
Fahuai Yi, “Global classical solution of Muskat free boundary problem”, Journal of Mathematical Analysis and Applications, 288:2 (2003), 442
Solonnikov V., “Lectures on Evolution Free Boundary Problems: Classical Solutions”, Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics, 1812, ed. Ambrosio L. Mimura M. Deckelnick K. Solonnikov V. Dziuk G. Soner H. Colli P. Rodrigues J., Springer-Verlag Berlin, 2003, 123–175
Christof Eck, Peter Knabner, Sergey Korotov, “A Two-Scale Method for the Computation of Solid–Liquid Phase Transitions with Dendritic Microstructure”, Journal of Computational Physics, 178:1 (2002), 58
Fahuai Yi, Yuqing Liu, “Two-Phase Stefan Problem as the Limit Case of Two-Phase Stefan Problem with Kinetic Condition”, Journal of Differential Equations, 183:1 (2002), 189
Schweizer B., “A Stable Time Discretization of the Stefan Problem with Surface Tension”, SIAM J. Numer. Anal., 40:3 (2002), 1184–1205
Yi F., “On a Three-Dimensional Free Boundary Problem in Superconductivity Involving Mean Curvature”, Proc. R. Soc. Edinb. Sect. A-Math., 131:Part 1 (2001), 205–224
Yoshiaki Kusaka, Atusi Tani, “On the Classical Solvability of the Stefan Problem in a Viscous Incompressible Fluid Flow”, SIAM J Math Anal, 30:3 (1999), 584
Yi F., Liu J., “Vanishing Specific Heat for the Classical Solutions of a Multidimensional Stefan Problem with Kinetic Condition”, Q. Appl. Math., 57:4 (1999), 661–672
Rodrigues J. Solonnikov V. Yi F., “On a Parabolic System with Time Derivative in the Boundary Conditions and Related Free Boundary Problems”, Math. Ann., 315:1 (1999), 61–95