Аннотация:
An integral presentation for the scalar products of nested Bethe vectors for the quantum integrable
models associated with the quantum affine algebra Uq(^gl3) is given. This result is obtained in the framework of the universal Bethe ansatz, using presentation of the universal Bethe vectors in terms of the total currents of a “new” realization of the quantum affine algebra Uq(^gl3).
Образец цитирования:
Samuel Belliard, Stanislav Pakuliak, Eric Ragoucy, “Universal Bethe Ansatz and Scalar Products of Bethe Vectors”, SIGMA, 6 (2010), 094, 22 pp.
\RBibitem{BelPakRag10}
\by Samuel Belliard, Stanislav Pakuliak, Eric Ragoucy
\paper Universal Bethe Ansatz and Scalar Products of Bethe Vectors
\jour SIGMA
\yr 2010
\vol 6
\papernumber 094
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma552}
\crossref{https://doi.org/10.3842/SIGMA.2010.094}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2769921}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000285631500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896062367}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma552
https://www.mathnet.ru/rus/sigma/v6/p94
Эта публикация цитируется в следующих 17 статьяx:
А. Ляшик, С. З. Пакуляк, “Алгебраический анзац Бете для o2n+1-инвариантных интегрируемых моделей”, ТМФ, 206:1 (2021), 23–46; A. N. Liashyk, S. Z. Pakuliak, “Algebraic Bethe ansatz for o2n+1-invariant integrable
models”, Theoret. and Math. Phys., 206:1 (2021), 19–39
Hutsalyuk A. Liashyk A. Pakuliak S.Z. Ragoucy E. Slavnov N.A., “Scalar Products and Norm of Bethe Vectors For Integrable Models Based on U-Q ((Gl)Over-Cap(M))”, SciPost Phys., 4:1 (2018), 006
Gromov N. Levkovich-Maslyuk F., “New Compact Construction of Eigenstates For Supersymmetric Spin Chains”, J. High Energy Phys., 2018, no. 9, 085
Stanislav Pakuliak, Eric Ragoucy, Nikita Slavnov, “Nested Algebraic Bethe Ansatz in integrable models: recent results”, SciPost Phys. Lect. Notes, 2018
Hutsalyuk A., Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., “Scalar products of Bethe vectors in models with gl(2|1) symmetry 2. Determinant representation”, J. Phys. A-Math. Theor., 50:3 (2017), 034004
Gromov N., Levkovich-Maslyuk F., Sizov G., “New Construction of Eigenstates and Separation of Variables For Su(N) Quantum Spin Chains”, J. High Energy Phys., 2017, no. 9, 111
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Multiple actions of the monodromy matrix in gl(2|1)-invariant integrable models”, SIGMA, 12 (2016), 099, 22 pp.
Н. А. Славнов, “Мультикоммутационные соотношения в моделях с gl(2|1)-симметрией”, ТМФ, 189:2 (2016), 256–278; N. A. Slavnov, “Multiple commutation relations in the models with gl(2|1) symmetry”, Theoret. and Math. Phys., 189:2 (2016), 1624–1644
Wheeler M., “Scalar Products in Generalized Models with Su(3)-Symmetry”, Commun. Math. Phys., 327:3 (2014), 737–777
Ivan Kostov, “Semi-classical Scalar Products in the Generalised SU(2) Model”, Springer Proceedings in Mathematics and Statistics, 111 (2014), 87–103
Belliard S., Pakuliak S., Ragoucy E., Slavnov N.A., “Bethe Vectors of Gl(3)-Invariant Integrable Models”, J. Stat. Mech.-Theory Exp., 2013, P02020
Samuel Belliard, Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Bethe Vectors of Quantum Integrable Models with GL(3) Trigonometric R-Matrix”, SIGMA, 9 (2013), 058, 23 pp.
Wheeler M., “Multiple Integral Formulae for the Scalar Product of on-Shell and Off-Shell Bethe Vectors in Su(3)-Invariant Models”, Nucl. Phys. B, 875:1 (2013), 186–212
Pozsgay B., Oei Willem-Victor van Gerven, Kormos M., “On Form Factors in Nested Bethe Ansatz Systems”, J. Phys. A-Math. Theor., 45:46 (2012), 465007
Belliard S., Pakuliak S., Ragoucy E., Slavnov N.A., “The Algebraic Bethe Ansatz for Scalar Products in Su (3)-Invariant Integrable Models”, J. Stat. Mech.-Theory Exp., 2012, P10017
Belliard S., Pakuliak S., Ragoucy E., Slavnov N.A., “Highest Coefficient of Scalar Products in Su(3)-Invariant Integrable Models”, J. Stat. Mech.-Theory Exp., 2012, P09003
Belliard S., Fomin V., “Generalized Q-Onsager Algebras and Dynamical K-Matrices”, J. Phys. A-Math. Theor., 45:2 (2012), 025201