|
On widths of some classes of analytic functions in a circle
Mirgand Sh. Shabozova, Muqim S. Saidusajnovb a Tajik National University
b University of Central Asia
Аннотация:
We calculate exact values of some $n$-widths of the class $W_{q}^{(r)}(\Phi),$ $r\in\mathbb{Z}_{+},$ in the Banach spaces $\mathscr{L}_{q,\gamma}$ and $B_{q,\gamma},$ $1\leq q\leq\infty,$ with a weight $\gamma$. These classes consist of
functions $f$ analytic in the unit circle, their $r$th order derivatives $f^{(r)}$ belong to the Hardy space $H_{q},$ $1\leq
q\leq\infty,$ and the averaged moduli of smoothness of boundary values of $f^{(r)}$ are bounded by a given majorant $\Phi$ at the system of points $\{\pi/(2k)\}_{k\in\mathbb{N}}$; more precisely,
$$
\frac{k}{\pi-2}\int_{0}^{\pi/(2k)}\omega_{2}(f^{(r)},2t)_{H_{q,\rho}}dt\leq
\Phi\left(\frac{\pi}{2k}\right)
$$
for all $k\in\mathbb{N}$, $k>r.$
Ключевые слова:
Modulus of smoothness, The best approximation, $n$-widths, The best linear method of approximation
Образец цитирования:
Mirgand Sh. Shabozov, Muqim S. Saidusajnov, “On widths of some classes of analytic functions in a circle”, Ural Math. J., 10:2 (2024), 121–130
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj239 https://www.mathnet.ru/rus/umj/v10/i2/p121
|
Статистика просмотров: |
Страница аннотации: | 41 | PDF полного текста: | 12 | Список литературы: | 9 |
|