Аннотация:
In the first section of this note, we show that Theorem 1.8.1 of Bayer–Manin can be strengthened in the following way: If the even quantum cohomology of a projective algebraic manifold V is generically semisimple, then V has no odd cohomology and is of Hodge–Tate type. In particular, this answers a question discussed by G. Ciolli. In the second section, we prove that an analytic (or formal) supermanifold M with a given supercommutative associative OM-bilinear multiplication on its tangent sheaf TM is an F-manifold in the sense of Hertling–Manin if and only if its spectral cover, as an analytic subspace of the cotangent bundle T∗M, is coisotropic of maximal dimension. This answers a question of V. Ginzburg. Finally, we discuss these results in the context of mirror symmetry and Landau–Ginzburg models for Fano varieties.
Образец цитирования:
C. Hertling, Yu. I. Manin, C. Teleman, “An Update on Semisimple Quantum Cohomology and F-Manifolds”, Многомерная алгебраическая геометрия, Сборник статей. Посвящается памяти члена-корреспондента РАН Василия Алексеевича Исковских, Труды МИАН, 264, МАИК «Наука/Интерпериодика», М., 2009, 69–76; Proc. Steklov Inst. Math., 264 (2009), 62–69
\RBibitem{HerManTel09}
\by C.~Hertling, Yu.~I.~Manin, C.~Teleman
\paper An Update on Semisimple Quantum Cohomology and $F$-Manifolds
\inbook Многомерная алгебраическая геометрия
\bookinfo Сборник статей. Посвящается памяти члена-корреспондента РАН Василия Алексеевича Исковских
\serial Труды МИАН
\yr 2009
\vol 264
\pages 69--76
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm804}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2590836}
\elib{https://elibrary.ru/item.asp?id=11807018}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 264
\pages 62--69
\crossref{https://doi.org/10.1134/S0081543809010088}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265834800007}
\elib{https://elibrary.ru/item.asp?id=14787055}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65749110530}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm804
https://www.mathnet.ru/rus/tm/v264/p69
Эта публикация цитируется в следующих 24 статьяx:
Todor Milanov, Xiaokun Xia, “Reflection Vectors and Quantum Cohomology of Blowups”, SIGMA, 20 (2024), 029, 60 pp.
Sergey Galkin, Ilya Karzhemanov, Evgeny Shinder, “On automorphic forms of small weight for fake projective planes”, Mosc. Math. J., 23:1 (2023), 97–111
Xiaowen Hu, Hua-Zhong Ke, “Gamma conjecture II for quadrics”, Math. Ann., 387:1-2 (2023), 927
Cotti G., “Coalescence Phenomenon of Quantum Cohomology of Grassmannians and the Distribution of Prime Numbers”, Int. Math. Res. Notices, 2022:2 (2022), 1454–1493
Lino Amorim, Junwu Tu, “Categorical primitive forms of Calabi–Yau A∞A∞-categories with semi-simple cohomology”, Sel. Math. New Ser., 28:3 (2022)
Kuznetsov A., Smirnov M., “Residual Categories For (Co)Adjoint Grassmannians in Classical Types”, Compos. Math., 157:6 (2021), 1172–1206
Basalaev A., Hertling C., “3-Dimensional F-Manifolds”, Lett. Math. Phys., 111:4 (2021), 90
Cotti G., “Degenerate Riemann-Hilbert-Birkhoff Problems, Semisimplicity, and Convergence of Wdvv-Potentials”, Lett. Math. Phys., 111:4 (2021), 99
Liana David, Claus Hertling, Proceedings of Symposia in Pure Mathematics, 103.1, Integrability, Quantization, and Geometry, 2021, 171
Giordano Cotti, Boris Dubrovin, Davide Guzzetti, “Local Moduli of Semisimple Frobenius Coalescent Structures”, SIGMA, 16 (2020), 040, 105 pp.
David L., Hertling C., “(Te)-Structures Over the Irreducible 2-Dimensional Globally Nilpotent F-Manifold Germ”, Rev. Roum. Math. Pures Appl., 65:3, SI (2020), 235–284
Sanda F., Shamoto Y., “An Analogue of Dubrovin'S Conjecture”, Ann. Inst. Fourier, 70:2 (2020), 621–682
David L., Hertling C., “(T)-Structures Over Two-Dimensional F-Manifolds: Formal Classification”, Ann. Mat. Pura Appl., 199:3 (2020), 1221–1242
Cruz Morales J.A., Mellit A., Perrin N., Smirnov M., Kuznetsov A., “On Quantum Cohomology of Grassmannians of Isotropic Lines, Unfoldings of a(N)-Singularities, and Lefschetz Exceptional Collections”, Ann. Inst. Fourier, 69:3 (2019), 955–991
Ke H.-Zh., “On Semisimplicity of Quantum Cohomology of P-1-Orbifolds”, J. Geom. Phys., 144 (2019), 1–14
Yu. I. Manin, “Grothendieck–Verdier duality patterns in quantum algebra”, Изв. РАН. Сер. матем., 81:4 (2017), 158–166; Izv. Math., 81:4 (2017), 818–826
David L., Hertling C., “Regular F-Manifolds: Initial Conditions and Frobenius Metrics”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 17:3 (2017), 1121–1152
Plaza Martin F.J., Tejero Prieto C., “Virasoro and KdV”, Lett. Math. Phys., 107:5 (2017), 963–994
Galkin S., Mellit A., Smirnov M., “Dubrovin'S Conjecture For Ig(2,6)”, Int. Math. Res. Notices, 2015, no. 18, 8847–8859
Marcolli M., Tabuada G., “From Exceptional Collections To Motivic Decompositions Via Noncommutative Motives”, J. Reine Angew. Math., 701 (2014), 153–167