Аннотация:
Let DD be a central division algebra of degree nn over a field KK. One defines the genus gen(D)gen(D) as the set of classes [D′]∈Br(K) in the Brauer group of K represented by central division algebras D′ of degree n over K having the same maximal subfields as D. We prove that if the field K is finitely generated and n is prime to its characteristic, then gen(D) is finite, and give explicit estimations of its size in certain situations.
The first author was supported by the Canada Research Chair Program and by an NSERC research grant. The second author was partially supported by the NSF grant DMS-1301800 and BSF grant 201049. The third author was supported by an NSF Postdoctoral Fellowship.
Образец цитирования:
Vladimir I. Chernousov, Andrei S. Rapinchuk, Igor A. Rapinchuk, “On the size of the genus of a division algebra”, Алгебра, геометрия и теория чисел, Сборник статей. К 75-летию со дня рождения академика Владимира Петровича Платонова, Труды МИАН, 292, МАИК «Наука/Интерпериодика», М., 2016, 69–99; Proc. Steklov Inst. Math., 292 (2016), 63–93
\RBibitem{CheRapRap16}
\by Vladimir~I.~Chernousov, Andrei~S.~Rapinchuk, Igor~A.~Rapinchuk
\paper On the size of the genus of a division algebra
\inbook Алгебра, геометрия и теория чисел
\bookinfo Сборник статей. К~75-летию со дня рождения академика Владимира Петровича Платонова
\serial Труды МИАН
\yr 2016
\vol 292
\pages 69--99
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3691}
\crossref{https://doi.org/10.1134/S0371968516010052}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628454}
\elib{https://elibrary.ru/item.asp?id=25772713}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 292
\pages 63--93
\crossref{https://doi.org/10.1134/S0081543816010053}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376271200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971280622}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3691
https://doi.org/10.1134/S0371968516010052
https://www.mathnet.ru/rus/tm/v292/p69
Эта публикация цитируется в следующих 12 статьяx:
Charlotte Ure, “Prime torsion in the Brauer group of an elliptic curve”, Trans. Amer. Math. Soc., 2024
Vladimir I. Chernousov, Andrei S. Rapinchuk, Igor A. Rapinchuk, “Simple algebraic groups with the same maximal tori, weakly commensurable Zariski-dense subgroups, and good reduction”, Advances in Mathematics, 438 (2024), 109437
Igor Rapinchuk, Contemporary Mathematics, 800, Amitsur Centennial Symposium, 2024, 271
Daniel Krashen, Max Lieblich, Contemporary Mathematics, 800, Amitsur Centennial Symposium, 2024, 191
Krashen D., Matzri E., Rapinchuk A., Rowen L., Saltman D., “Division Algebras With Common Subfields”, Manuscr. Math., 169:1-2 (2022), 209–249
Andrei S. Rapinchuk, Igor A. Rapinchuk, “Some finiteness results for algebraic groups and unramified cohomology over higher-dimensional fields”, Journal of Number Theory, 233 (2022), 228
A. S. Rapinchuk, I. A. Rapinchuk, “Linear algebraic groups with good reduction”, Res. Math. Sci., 7:3 (2020), 28
S. Srinivasan, “A finiteness theorem for special unitary groups of quaternionic skew-Hermitian forms with good reduction”, Doc. Math., 25 (2020), 1171–1194
Chernosov V.I., Rapinchuk A.S., Rapinchuk I.A., “The Finiteness of the Genus of a Finite-Dimensional Division Algebra, and Some Generalizations”, Isr. J. Math., 236:2 (2020), 747–799
V. I. Chernousov, A. S. Rapinchuk, I. A. Rapinchuk, “Spinor groups with good reduction”, Compos. Math., 155:3 (2019), 484–527
N. Bhaskhar, V. Chernousov, A. Merkurjev, “The norm principle for type D-N groups over complete discretely valued fields”, Trans. Am. Math. Soc., 372:1 (2019), 97–117
Chernousov V.I. Rapinchuk A.S. Rapinchuk I.A., “On some finiteness properties of algebraic groups over finitely generated fields”, C. R. Math., 354:9 (2016), 869–873