Аннотация:
В основе широко известного подхода Дж. Наттолла к выводу формул сильной асимптотики для полиномов Эрмита–Паде для набора из m многозначных функций лежит гипотеза о существовании канонической в смысле разбиения на листы m-листной римановой поверхности, обладающей определенными свойствами. В настоящей работе для m=3 вводится понятие абстрактного конденсатора Наттолла и описывается процедура построения по этому конденсатору трехлистной римановой поверхности R3, обладающей каноническим разбиением. Рассматривается система из трех функций f1,f2,f3, рациональных на построенной римановой поверхности и удовлетворяющих условию независимости det[fk(z(j))]≢0. Для случая m=3 уточняется основная теорема из работы Наттолла 1981 г. В частности, показано, что в рассматриваемом случае дополнение ¯C∖B открытого (возможно, несвязного) множества B⊂¯C, введенного в работе Наттолла, состоит из конечного числа аналитических дуг. Предложена новая гипотеза о формулах сильной асимптотики для аппроксимаций Паде.
Образец цитирования:
Р. К. Ковачева, С. П. Суетин, “Распределение нулей полиномов Эрмита–Паде для системы из трех функций и конденсатор Наттолла”, Функциональные пространства и смежные вопросы анализа, Сборник статей. К 80-летию со дня рождения члена-корреспондента РАН Олега Владимировича Бесова, Труды МИАН, 284, МАИК «Наука/Интерпериодика», М., 2014, 176–199; Proc. Steklov Inst. Math., 284 (2014), 168–191
\RBibitem{KovSue14}
\by Р.~К.~Ковачева, С.~П.~Суетин
\paper Распределение нулей полиномов Эрмита--Паде для системы из трех функций и конденсатор Наттолла
\inbook Функциональные пространства и смежные вопросы анализа
\bookinfo Сборник статей. К~80-летию со дня рождения члена-корреспондента РАН Олега Владимировича Бесова
\serial Труды МИАН
\yr 2014
\vol 284
\pages 176--199
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3528}
\crossref{https://doi.org/10.1134/S0371968514010129}
\elib{https://elibrary.ru/item.asp?id=21249111}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 284
\pages 168--191
\crossref{https://doi.org/10.1134/S008154381401012X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335559000011}
\elib{https://elibrary.ru/item.asp?id=21876711}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899844590}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3528
https://doi.org/10.1134/S0371968514010129
https://www.mathnet.ru/rus/tm/v284/p176
Эта публикация цитируется в следующих 6 статьяx:
А. В. Комлов, Р. В. Пальвелев, “Нули дискриминантов, построенных по полиномам Эрмита–Паде алгебраической функции, и их связь с точками ветвления”, Матем. сб., 215:12 (2024), 56–88; A. V. Komlov, R. V. Palvelev, “Zeros of discriminants constructed from Hermite–Padé polynomials of an algebraic function and their relation to branch points”, Sb. Math., 215:12 (2024), 1633–1665
Kovacheva R., “A Note on Overconvergent Subsequences of the Mth Row of Classical Pade Approximants”, AIP Conference Proceedings, 2048, eds. Pasheva V., Popivanov N., Venkov G., Amer Inst Physics, 2018, 050013
А. В. Комлов, Р. В. Пальвелев, С. П. Суетин, Е. М. Чирка, “Аппроксимации Эрмита–Паде для мероморфных функций на компактной римановой поверхности”, УМН, 72:4(436) (2017), 95–130; A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russian Math. Surveys, 72:4 (2017), 671–706
А. В. Комлов, Н. Г. Кружилин, Р. В. Пальвелев, С. П. Суетин, “О сходимости квадратичных аппроксимаций Шафера”, УМН, 71:2(428) (2016), 205–206; A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “Convergence of Shafer quadratic approximants”, Russian Math. Surveys, 71:2 (2016), 373–375
A. Martinez-Finkelshtein, E. .A. Rakhmanov, S. P. Suetin, “Asymptotics of Type I Hermite-Padé Polynomials for Semiclassical Functions”, Modern Trends in Constructive Function Theory, Conference and School on Constructive Functions in honor of Ed Saff's 70th Birthday Location (Vanderbilt Univ, Nashville, TN, 2014), Contemporary Mathematics, 661, 2016, 199–228
С. П. Суетин, “Распределение нулей полиномов Паде и аналитическое продолжение”, УМН, 70:5(425) (2015), 121–174; S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951