Аннотация:
The seminal paper by Kolmogorov, Petrovskii, and Piskunov (KPP) of 1937 on the travelling wave propagation in the reaction–diffusion equation ut=uxx+u(1−u) in R×R+ with u0(x)=H(−x)≡1 for x<0 and 0 for x⩾0 (here H(⋅) is the Heaviside function) opened a new era in the general theory of nonlinear PDEs and various applications. This paper became an encyclopedia of deep mathematical techniques and tools for nonlinear parabolic equations, which, in the last seventy years, were further developed in hundreds of papers and in dozens of monographs. The KPP paper established the fundamental fact that, in the above equation, there occurs a travelling wave f(x−λ0t), with the minimal speed λ0=2, and, in the moving frame with the front shift xf(t) (u(xf(t),t)≡1/2), there is uniform convergence u(xf(t)+y,t)→f(y) as t→+∞, where xf(t)=2t(1+o(1)). In 1983, by a probabilistic approach, Bramson proved that there exists an unboundedlogt-shift of the wave front in the indicated PDE problem and xf(t)=2t−(3/2)logt(1+o(1)) as t→+∞. Our goal is to reveal some aspects of KPP-type problems for higher-order semilinear parabolic PDEs, including the bi-harmonic equation and the tri-harmonic one, ut=−uxxxx+u(1−u) and ut=uxxxxxx+u(1−u). Two main questions to study are (i) existence of travelling waves via any analytical/numerical methods and (ii) a formal derivation of the logt-shifting of moving fronts.
Образец цитирования:
V. A. Galaktionov, “The KPP-problem and logt-front shift for higher-order semilinear parabolic equations”, Теория функций и уравнения математической физики, Сборник статей. К 90-летию со дня рождения члена-корреспондента РАН Льва Дмитриевича Кудрявцева, Труды МИАН, 283, МАИК «Наука/Интерпериодика», М., 2013, 49–79; Proc. Steklov Inst. Math., 283 (2013), 44–74
\RBibitem{Gal13}
\by V.~A.~Galaktionov
\paper The KPP-problem and $\log t$-front shift for higher-order semilinear parabolic equations
\inbook Теория функций и уравнения математической физики
\bookinfo Сборник статей. К~90-летию со дня рождения члена-корреспондента РАН Льва Дмитриевича Кудрявцева
\serial Труды МИАН
\yr 2013
\vol 283
\pages 49--79
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3500}
\crossref{https://doi.org/10.1134/S0371968513040055}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3479948}
\elib{https://elibrary.ru/item.asp?id=20783229}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 283
\pages 44--74
\crossref{https://doi.org/10.1134/S0081543813080051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000330983000004}
\elib{https://elibrary.ru/item.asp?id=20440023}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3500
https://doi.org/10.1134/S0371968513040055
https://www.mathnet.ru/rus/tm/v283/p49
Эта публикация цитируется в следующих 4 статьяx:
Zehra Pinar, Huseyin Kocak, “Lie group analysis and exact solutions of nonlinear dispersive equations for porous media”, Eur. Phys. J. Plus, 137:2 (2022)
Hüseyin Koçak, Zehra Pinar, “Wave propagations for dispersive variants of spatial models in epidemiology and ecology”, Communications in Nonlinear Science and Numerical Simulation, 109 (2022), 106316
Kocak H., “Traveling Waves in Nonlinear Media With Dispersion, Dissipation, and Reaction”, Chaos, 30:9 (2020), 093143
Z. Pinar, H. Kocak, “Exact solutions for the third-order dispersive-Fisher equations”, Nonlinear Dyn., 91:1 (2018), 421–426