Loading [MathJax]/jax/output/SVG/config.js
Труды Института математики и механики УрО РАН
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Тр. ИММ УрО РАН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Труды Института математики и механики УрО РАН, 2011, том 17, номер 3, страницы 83–97 (Mi timm723)  

Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)

Влияние гладкости на погрешность аппроксимации производных при локальной интерполяции на триангуляциях

Н. В. Байдаковаab

a Институт математики и механики УрО РАН
b Уральский федеральный университет
Список литературы:
Аннотация: Работа посвящена одной из проблем интерполяции функции на треугольнике. Рассматривается большой класс интерполяционных условий, обеспечивающих гладкость порядка $m$ результирующей кусочно-полиномиальной функции на триангулированной области. Известно, что при гладкости $m\ge1$ во многих имеющихся оценках сверху величин погрешности аппроксимации производных функции порядка $2$ и выше производными интерполяционных многочленов, определенных на элементе триангуляции, присутствует синус наименьшего угла в знаменателе. Это приводит к необходимости наложения “условия наименьшего угла” на триангуляцию. Ранее было показано, что влияние наименьшего угла можно ослабить (это не означает, что его можно исключить полностью во всех случаях). Основная цель данной работы – показать, что для большого множества способов выбора условий интерполяции, в том числе традиционных, при $m\ge1$ влияние наименьшего угла треугольника на величину погрешности аппроксимации производных функции производными интерполяционного многочлена является существенным для ряда производных порядка $2$ и выше. В случае $m=0$ существенным является влияние среднего (наибольшего) угла. Как следствие будут усилены результаты по неулучшаемости полученных ранее оценок сверху.
Ключевые слова: многомерная интерполяция, метод конечных элементов, аппроксимация.
Поступила в редакцию: 15.04.2011
Англоязычная версия:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2012, Volume 277, Issue 1, Pages 33–47
DOI: https://doi.org/10.1134/S0081543812050057
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.51
Образец цитирования: Н. В. Байдакова, “Влияние гладкости на погрешность аппроксимации производных при локальной интерполяции на триангуляциях”, Тр. ИММ УрО РАН, 17, № 3, 2011, 83–97; Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 33–47
Цитирование в формате AMSBIB
\RBibitem{Bai11}
\by Н.~В.~Байдакова
\paper Влияние гладкости на погрешность аппроксимации производных при локальной интерполяции на триангуляциях
\serial Тр. ИММ УрО РАН
\yr 2011
\vol 17
\issue 3
\pages 83--97
\mathnet{http://mi.mathnet.ru/timm723}
\elib{https://elibrary.ru/item.asp?id=17870123}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2012
\vol 277
\issue , suppl. 1
\pages 33--47
\crossref{https://doi.org/10.1134/S0081543812050057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305909000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84863604863}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/timm723
  • https://www.mathnet.ru/rus/timm/v17/i3/p83
  • Эта публикация цитируется в следующих 9 статьяx:
    1. Klyachin A.A., “Estimation of the Error of Calculating the Functional Containing Higher-Order Derivatives on a Triangular Grid”, Sib. Electron. Math. Rep., 16 (2019), 1856–1867  mathnet  crossref  zmath  isi
    2. Н. В. Байдакова, “Линейная интерполяция на тетраэдре”, Тр. ИММ УрО РАН, 24, № 4, 2018, 80–84  mathnet  crossref  elib; N. V. Baidakova, “Linear Interpolation on a Tetrahedron”, Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S31–S34  crossref  isi
    3. А. А. Клячин, “Построение треугольной сетки для областей, ограниченных замкнутыми простыми кривыми”, Математическая физика и компьютерное моделирование, 21:3 (2018), 31–38  mathnet  crossref
    4. Н. В. Байдакова, “Об оценках П. Жамэ для конечных элементов с интерполяцией в равномерных узлах симплекса”, Матем. тр., 20:1 (2017), 43–74  mathnet  crossref  elib; N. V. Baǐdakova, “On Jamet's estimates for the finite element method with interpolation at uniform nodes of a simplex”, Siberian Adv. Math., 28:1 (2018), 1–22  crossref
    5. А. А. Клячин, “Построение триангуляции плоских областей методом измельчения”, Вестн. Волгогр. гос. ун-та. Сер. 1, Мат. Физ., 2017, № 2(39), 18–28  mathnet  crossref
    6. Н. В. Байдакова, “Треугольный конечный элемент с новыми аппроксимативными свойствами”, Тр. ИММ УрО РАН, 21, № 4, 2015, 67–77  mathnet  mathscinet  elib; N. V. Baidakova, “A triangular finite element with new approximation properties”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 74–84  crossref  isi
    7. Н. В. Байдакова, “Оценки снизу погрешности аппроксимации производных для составных конечных элементов со свойством гладкости”, Тр. ИММ УрО РАН, 20, № 1, 2014, 32–42  mathnet  mathscinet  elib; N. V. Baidakova, “Lower estimates for the error of approximation of derivatives for composite finite elements with smoothness properties”, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 29–39  crossref  isi
    8. Н. В. Байдакова, “Новые оценки величин погрешности аппроксимации производных при интерполяции функции многочленами третьей степени на треугольнике”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 13:1(2) (2013), 15–19  mathnet  crossref  elib
    9. Н. В. Байдакова, “Оценки сверху величины погрешности аппроксимации производных в конечном элементе Сие–Клафа–Точера”, Тр. ИММ УрО РАН, 18, № 4, 2012, 80–89  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики и механики УрО РАН
    Статистика просмотров:
    Страница аннотации:403
    PDF полного текста:133
    Список литературы:57
    Первая страница:1
     
      Обратная связь:
    math-net2025_03@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025