Аннотация:
The Mishchenko–Fomenko conjecture says that for each real or complex finite-dimensional Lie algebra g there exists a complete set of commuting polynomials on its dual space g∗.
In terms of the theory of integrable Hamiltonian systems this means that the dual space g∗ endowed with the standard Lie–Poisson bracket admits polynomial integrable Hamiltonian systems.
This conjecture was proved by S. T. Sadetov in 2003.
Following his idea, we give an explicit geometric construction for commuting polynomials on g∗ and consider some examples.
Ключевые слова:
Poisson-Lie bracket, complete integrability, field extension, Mischenko–Fomenko conjecture, chains of subalgebras, shifting of argument.
Образец цитирования:
Alexey V. Bolsinov, “Complete commutative subalgebras in polynomial Poisson algebras: a proof of the Mischenko–Fomenko conjecture”, Theor. Appl. Mech., 43:2 (2016), 145–168
\RBibitem{Bol16}
\by Alexey~V.~Bolsinov
\paper Complete commutative subalgebras in polynomial Poisson algebras: a proof of the Mischenko--Fomenko conjecture
\jour Theor. Appl. Mech.
\yr 2016
\vol 43
\issue 2
\pages 145--168
\mathnet{http://mi.mathnet.ru/tam11}
\crossref{https://doi.org/10.2298/TAM161111012B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391372600001}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tam11
https://www.mathnet.ru/rus/tam/v43/i2/p145
Эта публикация цитируется в следующих 4 статьяx:
Božidar Jovanović, Tijana Šukilović, Srdjan Vukmirović, “Almost multiplicity free subgroups of compact Lie groups and polynomial integrability of sub-Riemannian geodesic flows”, Lett Math Phys, 114:1 (2024)
Bozidar Jovanović, Tijana Šukilović, Srdjan Vukmirović, “Integrable Systems Associated to the Filtrations
of Lie Algebras”, Regul. Chaotic Dyn., 28:1 (2023), 44–61
К. С. Ворушилов, “Полные наборы полиномов в биинволюции на нильпотентных семимерных алгебрах Ли”, Матем. сб., 212:9 (2021), 3–17; K. S. Vorushilov, “Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras”, Sb. Math., 212:9 (2021), 1193–1207
Alexey Bolsinov, Vladimir S. Matveev, Eva Miranda, Serge Tabachnikov, “Open problems, questions and challenges in finite- dimensional integrable systems”, Phil. Trans. R. Soc. A., 376:2131 (2018), 20170430