Аннотация:
In 1983 Bogoyavlenski conjectured that, if the Euler equations on a Lie algebra g0 are integrable, then their certain extensions to semisimple lie algebras g related to the filtrations of Lie algebras
g0⊂g1⊂g2⋯⊂gn−1⊂gn=g are integrable as well.
In particular, by taking g0={0} and natural filtrations of so(n) and u(n), we have
Gel’fand – Cetlin integrable systems. We prove the conjecture
for filtrations of compact Lie algebras g: the system is integrable in a noncommutative sense by means of polynomial integrals.
Various constructions of complete commutative polynomial integrals for the system are also given.
This research is supported by Project 7744592 MEGIC, Integrability and Extremal Problems in
Mechanics, Geometry and Combinatorics, of the Science Fund of Serbia.
Поступила в редакцию: 29.09.2022 Принята в печать: 11.01.2023
\RBibitem{JovSukVuk23}
\by Bozidar Jovanovi\'c, Tijana {\v S}ukilovi\'c, Srdjan Vukmirovi\'c
\paper Integrable Systems Associated to the Filtrations
of Lie Algebras
\jour Regul. Chaotic Dyn.
\yr 2023
\vol 28
\issue 1
\pages 44--61
\mathnet{http://mi.mathnet.ru/rcd1194}
\crossref{https://doi.org/10.1134/S1560354723010045}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4559068}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1194
https://www.mathnet.ru/rus/rcd/v28/i1/p44
Эта публикация цитируется в следующих 1 статьяx:
Božidar Jovanović, Tijana Šukilović, Srdjan Vukmirović, “Almost multiplicity free subgroups of compact Lie groups and polynomial integrability of sub-Riemannian geodesic flows”, Lett Math Phys, 114:1 (2024)