Аннотация:
Let p be a polynomial in several non-commuting variables with coefficients in a field K of arbitrary characteristic. It has been conjectured that for any n, for p multilinear, the image of p evaluated on the set Mn(K) of n by n matrices is either zero, or the set of scalar matrices, or the set sln(K) of matrices of trace 0, or all of Mn(K). This expository paper describes research on this problem and related areas. We discuss the solution of this conjecture for n=2 in Section 2, some decisive results for n=3 in Section 3, and partial information for n≥3 in Section 4, also for non-multilinear polynomials. In addition we consider the case of K not algebraically closed, and polynomials evaluated on other finite dimensional simple algebras (in particular the algebra of the quaternions). This review recollects results and technical material of our previous papers, as well as new results of other researches, and applies them in a new context. This article also explains the role of the Deligne trick, which is related to some nonassociative cases in new situations, underlying our earlier, more straightforward approach. We pose some problems for future generalizations and point out possible generalizations in the present state of art, and in the other hand providing counterexamples showing the boundaries of generalizations.
Ключевые слова:
L'vov–Kaplansky conjecture, noncommutative polynomials, multilinear polynomial evaluations, power central polynomials, the Deligne trick, PI algebras.
The second and third
named authors were supported by the ISF (Israel Science Foundation) grant 1994/20. The
first named author was supported by the Russian Science Foundation grant No. 17-11-01377.
The second and fourth named authors were supported by Israel Innovation Authority, grant
no. 63412: Development of A.I. based platform for e commerce.
Поступила:18 сентября 2019 г.; в окончательном варианте 8 июля 2020 г.; опубликована 27 июля 2020 г.
Образец цитирования:
Alexei Kanel-Belov, Sergey Malev, Louis Rowen, Roman Yavich, “Evaluations of Noncommutative Polynomials on Algebras: Methods and Problems, and the L'vov–Kaplansky Conjecture”, SIGMA, 16 (2020), 071, 61 pp.
\RBibitem{KanMalRow20}
\by Alexei~~Kanel-Belov, Sergey~Malev, Louis~Rowen, Roman~Yavich
\paper Evaluations of Noncommutative Polynomials on Algebras: Methods and Problems, and the L'vov--Kaplansky Conjecture
\jour SIGMA
\yr 2020
\vol 16
\papernumber 071
\totalpages 61
\mathnet{http://mi.mathnet.ru/sigma1608}
\crossref{https://doi.org/10.3842/SIGMA.2020.071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000554997000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090519578}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1608
https://www.mathnet.ru/rus/sigma/v16/p71
Эта публикация цитируется в следующих 16 статьяx:
Qian Chen, “A note on the image of polynomials on upper triangular matrix algebras”, Communications in Algebra, 52:7 (2024), 3154
Matej Brešar, Peter Šemrl, “The Waring problem for matrix algebras”, Isr. J. Math., 253:1 (2023), 381
Luo Y., Wang Yu., “On Fagundes-Mello Conjecture”, J. Algebra, 592 (2022), 118–152
Malev S., Yavich R., Shayer R., “Evaluations of multilinear polynomials on low rank Jordan algebras”, Commun. Algebr., 50:7 (2022)
Ivan Gonzales Gargate, Thiago Castilho de Mello, “Images of multilinear polynomials on n × n upper triangular matrices over infinite fields”, Isr. J. Math., 252:1 (2022), 337
Qian Chen, Yu Wang, “WITHDRAWN: Images of arbitrary polynomials on upper triangular matrix algebras”, Journal of Algebra, 2022
D. Vitas, “Multilinear polynomials are surjective on algebras with surjective inner derivations”, J. Algebra, 565 (2021), 255–281
R. Behfar, H. Ghahramani, “Lie maps on triangular algebras without assuming unity”, Mediterr. J. Math., 18:5 (2021), 215
H. K. Nashine, R. Pant, R. George, “Common positive solution of two nonlinear matrix equations using fixed point results”, Mathematics, 9:18 (2021), 2199
D. Iosifidis, “Solving linear tensor equations”, Universe, 7:10 (2021), 383
S. Findik, O. Kelekci, “Symmetric polynomials of algebras related with 2×2 generic traceless matrices”, Int. J. Algebr. Comput., 31:07 (2021), 1433–1442
D. Vitas, “Images of multilinear polynomials in the algebra of finitary matrices contain trace zero matrices”, Linear Alg. Appl., 626 (2021), 221–233
Thiago Castilho de Mello, “The image of multilinear polynomials evaluated on 3 × 3 upper triangular matrices”, Communications in Mathematics, 29:2 (2021), 183
Quispe Urure R.I., Franca W., “Lie Identities and Images of Lie Polynomials For the Skew-Symmetric Elements of Utm”, Linear Multilinear Algebra, 2020
Sonea A.C., Cristea I., “The Class Equation and the Commutativity Degree For Complete Hypergroups”, Mathematics, 8:12 (2020), 2253
S. Malev, C. Pines, “The images of multilinear non-associative polynomials evaluated on a rock-paper-scissors algebra with unit over an arbitrary field and its subalgebras”, Чебышевский сб., 21:4 (2020), 129–139