Аннотация:
The ergodic unitarily invariant measures on the space of infinite Hermitian matrices have been classified by Pickrell and Olshanski–Vershik. The much-studied complex inverse Wishart measures form a projective family, thus giving rise to a unitarily invariant measure on infinite positive-definite matrices. In this paper we completely solve the corresponding problem of ergodic decomposition for this measure.
Assiotis T., “Infinite P-Adic Random Matrices and Ergodic Decomposition of P-Adic Hua Measures”, Trans. Am. Math. Soc., 375:3 (2022), 1745–1766
Theodoros Assiotis, Mustafa Alper Gunes, Arun Soor, “Convergence and an Explicit Formula for the Joint Moments of the Circular Jacobi β-Ensemble Characteristic Polynomial”, Math Phys Anal Geom, 25:2 (2022)
А. М. Вершик, Ф. В. Петров, “Обобщенная лемма Максвелла–Пуанкаре и меры Уишарта”, Теория представлений, динамические системы, комбинаторные методы. XXXIII, Зап. научн. сем. ПОМИ, 507, ПОМИ, СПб., 2021, 15–25
T. Gautie, J.-Ph. Bouchaud, P. Le Doussal, “Matrix Kesten recursion, inverse-Wishart ensemble and fermions in a Morse potential”, J. Phys. A-Math. Theor., 54:25 (2021), 255201
Theodoros Assiotis, Joseph Najnudel, “The boundary of the orbital beta process”, Mosc. Math. J., 21:4 (2021), 659–694
Theodoros Assiotis, Benjamin Bedert, Mustafa Alper Gunes, Arun Soor, “On a distinguished family of random variables
and Painlevé equations”, Prob. Math. Phys., 2:3 (2021), 613