Аннотация:
This work is a continuation of [13]. We consider a continuous-time birth – and – death process in which the transition rates are regularly varying function of the process position. We establish rough exponential asymptotic for the probability that a sample path of a normalized process lies in a neighborhood of a given nonnegative continuous function. We propose a variety of normalization schemes for which the large deviation functional preserves its natural integral form.
Ключевые слова:
birth – and – death process, normalization (scaling), large deviations principle, local large deviations principle, rate function.
NDV thanks Russian Science Foundation for the financial support through Grant 14-50-00150. AVL thanks FAPESP (São Paulo Research Foundation) for the financial support via Grant 2017/20482 and also thanks RFBR (Russian Foundation for Basic Research) grant 18-01-00101. YMS thanks The Math Department, Penn State University, for hospitality and support
and St John's College, Cambridge, for financial support. AAY thanks CNPq (National Council for Scientific and Technological Development) and FAPESP for the financial support via Grants 301050/2016-3 and 2017/10555-0, respectively.
Поступила11 ноября 2019 г., опубликована 7 сентября 2020 г.
Образец цитирования:
A. V. Logachov, Y. M. Suhov, N. D. Vvedenskaya, A. A. Yambartsev, “A remark on normalizations in a local large deviations principle for inhomogeneous birth – and – death process”, Сиб. электрон. матем. изв., 17 (2020), 1258–1269
\RBibitem{LogSukVve20}
\by A.~V.~Logachov, Y.~M.~Suhov, N.~D.~Vvedenskaya, A.~A.~Yambartsev
\paper A remark on normalizations in a local large deviations principle for inhomogeneous birth -- and -- death process
\jour Сиб. электрон. матем. изв.
\yr 2020
\vol 17
\pages 1258--1269
\mathnet{http://mi.mathnet.ru/semr1286}
\crossref{https://doi.org/10.33048/semi.2020.17.092}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000567361200001}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1286
https://www.mathnet.ru/rus/semr/v17/p1258
Эта публикация цитируется в следующих 1 статьяx:
A. Logachov, O. Logachova, E. Pechersky, E. Presman, A. Yambartsev, “Diffusion Approximation for Symmetric Birth-and-Death Processes with Polynomial Rates”, Markov Processes And Related Fields, 2024, no. 2023 №4(29), 605