Аннотация:
В обзоре излагается метод факторизации, основанный
на теории систем и операторных тождеств, являющихся обобщением
коммутационных соотношений. Этот аналитический
аппарат позволяет единообразно решать различные задачи
факторизации. В частности, получен метод континуального
разложения на множители оператор-функции. Эти результаты
прилагаются к обратным спектральным задачам для систем
уравнений. На этом пути удается существенно расширить
класс эффективно решаемых обратных задач. В статье содержатся
примеры и приложения.
Библ. 64 назв.
Alexander Sakhnovich, “Dressing for Fokker-Planck Equations: the Cases of 1+1 and 1+ℓ Dimensions”, Z. mat. fiz. anal. geom., 19:2 (2023), 503
Alexander Sakhnovich, “On the solution of the inverse problem for a class of canonical systems corresponding to matrix string equations”, Journal of Differential Equations, 318 (2022), 537
Inna Roitberg, Alexander Sakhnovich, “On the inversion of the block double-structured and of the triple-structured Toeplitz matrices and on the corresponding reflection coefficients”, Linear Algebra and its Applications, 610 (2021), 506
Oleksandr Chvartatskyi, Folkert Müller-Hoissen, “NLS breathers, rogue waves, and solutions of the Lyapunov equation for Jordan blocks”, J. Phys. A: Math. Theor., 50:15 (2017), 155204
Bernd Fritzsche, Bernd Kirstein, Inna Roitberg, Alexander Sakhnovich, “Stability of the procedure of explicit recovery of skew-selfadjoint Dirac systems from rational Weyl matrix functions”, Linear Algebra and its Applications, 533 (2017), 428
B. Fritzsche, M. A. Kaashoek, B. Kirstein, A. L. Sakhnovich, “Skew‐selfadjoint Dirac systems with rational rectangular Weyl functions: explicit solutions of direct and inverse problems and integrable wave equations”, Mathematische Nachrichten, 289:14-15 (2016), 1792
Henrik Winkler, Operator Theory, 2015, 525
Na Lei, Yuan Teng, Yu-xue Ren, “A fast algorithm for multivariate Hermite interpolation”, Appl. Math. J. Chin. Univ, 29:4 (2014), 438
Henrik Winkler, Operator Theory, 2014, 1
Aristophanes Dimakis, Folkert Müller-Hoissen, “Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations”, SIGMA, 9 (2013), 009, 31 pp.
B Fritzsche, B Kirstein, I Ya Roitberg, A L Sakhnovich, “Recovery of the Dirac system from the rectangular Weyl matrix function”, Inverse Problems, 28:1 (2012), 015010
B. Fritzsche, B. Kirstein, A. L. Sakhnovich, “Weyl functions of generalized Dirac systems: Integral representation, the inverse problem and discrete interpolation”, Jama, 116:1 (2012), 17
B. Fritzsche, B. Kirstein, I. Ya. Roitberg, A. L. Sakhnovich, “Skew-Self-Adjoint Dirac System with a Rectangular Matrix Potential: Weyl Theory, Direct and Inverse Problems”, Integr. Equ. Oper. Theory, 2012
B. Fritzsche, B. Kirstein, I.Ya. Roitberg, A.L. Sakhnovich, “Operator identities corresponding to inverse problems for Dirac systems”, Indagationes Mathematicae, 23:4 (2012), 690
A L Sakhnovich, “The time-dependent Schrödinger equation of dimensionk+ 1: explicit and rational solutions via GBDT and multinodes”, J. Phys. A: Math. Theor, 44:47 (2011), 475201
Alexander Sakhnovich, “Construction of the Solution of the Inverse Spectral Problem for a System Depending Rationally on the Spectral Parameter, Borg–Marchenko-Type Theorem and sine-Gordon Equation”, Integr. Equ. Oper. Theory, 2010
L. Sakhnovich, “The Krein differential system and integral operators of random matrix theory”, Алгебра и анализ, 22:5 (2010), 186–199; St. Petersburg Math. J., 22:5 (2011), 835–846
Fritzsche B., Katsnelson V., Kirstein B., “The Schur Algorithm in Terms of System Realizations”, Characteristic Functions, Scattering Functions and Transfer Functions: the Moshe Livsic Memorial Volume, Operator Theory Advances and Applications, 197, eds. Alpay D., Vinnikov V., Birkhauser Verlag Ag, 2010, 181–250
B. Fritzsche, B. Kirstein, A. L. Sakhnovich, “Semiseparable Integral Operators and Explicit Solution of an Inverse Problem for a Skew-Self-Adjoint Dirac-Type System”, Integr. Equ. Oper. Theory, 66:2 (2010), 231
Jan L Cieśliński, “Algebraic construction of the Darboux matrix revisited”, J Phys A Math Theor, 42:40 (2009), 404003