Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2014, том 19, выпуск 1, страницы 1–19
DOI: https://doi.org/10.1134/S1560354714010018
(Mi rcd89)
 

Эта публикация цитируется в 19 научных статьях (всего в 19 статьях)

Paul Painlevé and His Contribution to Science

Alexey V. Borisovabc, Nikolay A. Kudryashovd

a Institute of Mathematics and Mechanics of the Ural Branch of RAS, ul. S. Kovalevskoi 16, Ekaterinburg, 620990 Russia
b Institute of Computer Science, Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
c A. A. Blagonravov Mechanical Engineering Research Institute of RAS, ul. Bardina 4, Moscow, 117334 Russia
d Department of Applied Mathematics, National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow, 115409 Russia
Список литературы:
Аннотация: The life and career of the great French mathematician and politician Paul Painlevé is described. His contribution to the analytical theory of nonlinear differential equations was significant. The paper outlines the achievements of Paul Painlevé and his students in the investigation of an interesting class of nonlinear second-order equations and new equations defining a completely new class of special functions, now called the Painlevé transcendents. The contribution of Paul Painlevé to the study of algebraic nonintegrability of the N-body problem, his remarkable observations in mechanics, in particular, paradoxes arising in the dynamics of systems with friction, his attempt to create the axiomatics of mechanics and his contribution to gravitation theory are discussed.
Ключевые слова: mathematician, politician, Painlevé equations; Painlevé transcendents; Painlevé paradox.
Поступила в редакцию: 09.12.2013
Принята в печать: 10.01.2014
Реферативные базы данных:
Тип публикации: Научно-популярный, образовательный материал
MSC: 01-00, 01A55, 01A60
Язык публикации: английский
Образец цитирования: Alexey V. Borisov, Nikolay A. Kudryashov, “Paul Painlevé and His Contribution to Science”, Regul. Chaotic Dyn., 19:1 (2014), 1–19
Цитирование в формате AMSBIB
\RBibitem{BorKud14}
\by Alexey~V.~Borisov, Nikolay~A.~Kudryashov
\paper Paul Painlevé and His Contribution to Science
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 1
\pages 1--19
\mathnet{http://mi.mathnet.ru/rcd89}
\crossref{https://doi.org/10.1134/S1560354714010018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000333239100001}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd89
  • https://www.mathnet.ru/rus/rcd/v19/i1/p1
  • Эта публикация цитируется в следующих 19 статьяx:
    1. Muhammad Amir, Jamil Abbas Haider, Shahbaz Ahmad, Sana Gul, Asifa Ashraf, “Approximate Solution of Painlevé Equation I by Natural Decomposition Method and Laplace Decomposition Method”, Acta Mechanica et Automatica, 17:3 (2023), 417  crossref
    2. Nikolay A. Kudryashov, “Lax Pairs and Rational Solutions of Similarity Reductions for Kupershmidt and Sawada – Kotera Hierarchies”, Regul. Chaotic Dyn., 26:3 (2021), 271–292  mathnet  crossref  mathscinet
    3. Kudryashov N.A., “The Generalized Duffing Oscillator”, Commun. Nonlinear Sci. Numer. Simul., 93 (2021), 105526  crossref  mathscinet  isi  scopus
    4. Kudryashov N.A., “Lax Pairs For One of Hierarchies Similar to the First Painleve Hierarchy”, Appl. Math. Lett., 116 (2021), 107003  crossref  mathscinet  isi  scopus
    5. Nikolay A. Kudryashov, “Lax Pairs and Special Polynomials Associated with Self-similar Reductions of Sawada – Kotera and Kupershmidt Equations”, Regul. Chaotic Dyn., 25:1 (2020), 59–77  mathnet  crossref
    6. Nikolay A. Kudryashov, “Rational Solutions of Equations Associated with the Second Painlevé Equation”, Regul. Chaotic Dyn., 25:3 (2020), 273–280  mathnet  crossref
    7. Ahmad H., Khan T.A., Yao Sh.-W., “Numerical Solution of Second Order Painleve Differential Equation”, J. Math. Comput. Sci.-JMCS, 21:2 (2020), 150–157  crossref  mathscinet  isi  scopus
    8. Nikolay A. Kudryashov, “Rational and Special Solutions for Some Painlevé Hierarchies”, Regul. Chaotic Dyn., 24:1 (2019), 90–100  mathnet  crossref
    9. N. A. Kudryashov, “On Integrability of the FitzHugh – Rinzel Model”, Rus. J. Nonlin. Dyn., 15:1 (2019), 13–19  mathnet  crossref  elib
    10. N. A. Kudryashov, “Lax pair and first integrals of the traveling wave reduction for the KdV hierarchy”, Appl. Math. Comput., 350 (2019), 323–330  crossref  mathscinet  zmath  isi  scopus
    11. N. A. Kudryashov, “The Painlevé approach for finding solitary wave solutions of nonlinear nonintegrable differential equations”, Optik, 183 (2019), 642–649  crossref  mathscinet  isi  scopus
    12. M. B. Hubert, M. Justin, N. A. Kudryashov, G. Betchewe, Douvagai, S. Y. Doka, “Solitons in thin-film ferroelectric material”, Phys. Scr., 93:7 (2018), 075201  crossref  isi  scopus
    13. Nikolay A. Kudryashov, “Asymptotic and Exact Solutions of the FitzHugh–Nagumo Model”, Regul. Chaotic Dyn., 23:2 (2018), 152–160  mathnet  crossref
    14. Nikolay A. Kudryashov, “Exact Solutions and Integrability of the Duffing–Van der Pol Equation”, Regul. Chaotic Dyn., 23:4 (2018), 471–479  mathnet  crossref  mathscinet
    15. N. A. Kudryashov, D. I. Sinelshchikov, “On the Integrability Conditions for a Family of Liénard-type Equations”, Regul. Chaotic Dyn., 21:5 (2016), 548–555  mathnet  crossref
    16. A. R. Champneys, P. L. Varkonyi, “The Painlevé paradox in contact mechanics”, IMA J. Appl. Math., 81:3, SI (2016), 538–588  crossref  mathscinet  isi  scopus
    17. Nikolay A. Kudryashov, Dmitry I. Sinelshchikov, “On the Connection of the Quadratic Lienard Equation with an Equation for the Elliptic Functions”, Regul. Chaotic Dyn., 20:4 (2015), 486–496  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    18. Nikolay A. Kudryashov, “Analytical Solutions of the Lorenz System”, Regul. Chaotic Dyn., 20:2 (2015), 123–133  mathnet  crossref  mathscinet  zmath  adsnasa
    19. Nikolay A. Kudryashov, Dmitry I. Sinelshchikov, “Special Solutions of a High-order Equation for Waves in a Liquid with Gas Bubbles”, Regul. Chaotic Dyn., 19:5 (2014), 576–585  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:365
    Список литературы:101
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025