Аннотация:
The integrability of the FitzHugh – Rinzel model is considered. This model is an example of the system of equations having the expansion of the general solution in the Puiseux series with three arbitrary constants. It is shown that the FitzHugh – Rinzel model is not integrable in the general case, but there are two formal first integrals of the system of equations for its description. Exact solutions of the FitzHugh – Rinzel system of equations are given.
Ключевые слова:
FitzHugh – Rinzel model, Painlevé test, first integral, general solution, exact solution.
This research was supported by the Russian Science Foundation under Grant No 18-11-00209 “Development of methods for investigation of nonlinear mathematical models”.
Поступила в редакцию: 03.03.2019 Принята в печать: 17.03.2019
\RBibitem{Kud19}
\by N. A. Kudryashov
\paper On Integrability of the FitzHugh – Rinzel Model
\jour Rus. J. Nonlin. Dyn.
\yr 2019
\vol 15
\issue 1
\pages 13--19
\mathnet{http://mi.mathnet.ru/nd636}
\crossref{https://doi.org/10.20537/nd190102}
\elib{https://elibrary.ru/item.asp?id=37293018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064531968}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd636
https://www.mathnet.ru/rus/nd/v15/i1/p13
Эта публикация цитируется в следующих 1 статьяx:
De Angelis F., De Angelis M., “On solutions to a FitzHugh-Rinzel type model”, Ric. Mat., 70:1 (2021), 51–65