Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2019, том 24, выпуск 2, страницы 212–233
DOI: https://doi.org/10.1134/S1560354719020072
(Mi rcd455)
 

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

Qualitative Analysis of the Nonholonomic Rolling of a Rubber Wheel with Sharp Edges

Alexander A. Kilinab, Elena N. Pivovarovaca

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
b Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
c Center for Technologies in Robotics and Mechatronics Components, Innopolis University, ul. Universitetskaya 1, Innopolis, 420500 Russia
Список литературы:
Аннотация: This paper presents a qualitative analysis of the dynamics in a fixed reference frame of a wheel with sharp edges that rolls on a horizontal plane without slipping at the point of contact and without spinning relative to the vertical. The wheel is a ball that is symmetrically truncated on both sides and has a displaced center of mass. The dynamics of such a system is described by the model of the ball’s motion where the wheel rolls with its spherical part in contact with the supporting plane and the model of the disk’s motion where the contact point lies on the sharp edge of the wheel. A classification is given of possible motions of the wheel depending on whether there are transitions from its spherical part to sharp edges. An analysis is made of the behavior of the point of contact of the wheel with the plane for different values of the system parameters, first integrals and initial conditions. Conditions for boundedness and unboundedness of the wheel’s motion are obtained. Conditions for the fall of the wheel on the plane of sections are presented.
Ключевые слова: integrable system, system with discontinuity, nonholonomic constraint, bifurcation diagram, body of revolution, sharp edge, wheel, rubber body model, permanent rotations, dynamics in a fixed reference frame, resonance, quadrature, unbounded motion.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 18-08-00999-a
Министерство образования и науки Российской Федерации 5–100
1.2404.2017/4.6
This work was supported by Grant No. 18-08-00999-a of the Russian Foundation for Basic Research. The work of A. A. Kilin was carried out at MIPT under Project 5–100 for State Support for Leading Universities of the Russian Federation. The work of E.N. Pivovarova was carried out within the framework of the State Assignment of the Ministry of Education and Science of Russia (1.2404.2017/4.6) and was supported in part by the Moebius Contest Foundation for Young Scientists.
Поступила в редакцию: 17.01.2019
Принята в печать: 07.03.2019
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Alexander A. Kilin, Elena N. Pivovarova, “Qualitative Analysis of the Nonholonomic Rolling of a Rubber Wheel with Sharp Edges”, Regul. Chaotic Dyn., 24:2 (2019), 212–233
Цитирование в формате AMSBIB
\RBibitem{KilPiv19}
\by Alexander A. Kilin, Elena N. Pivovarova
\paper Qualitative Analysis of the Nonholonomic Rolling of a Rubber Wheel with Sharp Edges
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 2
\pages 212--233
\mathnet{http://mi.mathnet.ru/rcd455}
\crossref{https://doi.org/10.1134/S1560354719020072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464704800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064167154}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd455
  • https://www.mathnet.ru/rus/rcd/v24/i2/p212
  • Эта публикация цитируется в следующих 4 статьяx:
    1. Alexander A. Kilin, Elena N. Pivovarova, “Bifurcation analysis of the problem of a “rubber” ellipsoid of revolution rolling on a plane”, Nonlinear Dyn, 2024  crossref
    2. Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236  mathnet  crossref
    3. Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regul. Chaotic Dyn., 25:6 (2020), 689–706  mathnet  crossref  mathscinet
    4. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:231
    Список литературы:57
     
      Обратная связь:
    math-net2025_04@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025