Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2019, том 24, выпуск 5, страницы 560–582
DOI: https://doi.org/10.1134/S1560354719050071
(Mi rcd1026)
 

Эта публикация цитируется в 18 научных статьях (всего в 18 статьях)

Sergey Chaplygin Memorial Issue

Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem

Ivan A. Bizyaevab, Alexey V. Borisovc, Ivan S. Mamaevd

a Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
b Center for Technologies in Robotics and Mechatronics Components, Innopolis University, ul. Universitetskaya 1, Innopolis, 420500 Russia
c Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
d Institute of Mathematics and Mechanics of the Ural Branch of RAS, ul. S. Kovalevskoi 16, Ekaterinburg, 620990 Russia
Список литературы:
Аннотация: This paper addresses the problem of the rolling of a spherical shell with a frame rotating inside, on which rotors are fastened. It is assumed that the center of mass of the entire system is at the geometric center of the shell.
For the rubber rolling model and the classical rolling model it is shown that, if the angular velocities of rotation of the frame and the rotors are constant, then there exists a noninertial coordinate system (attached to the frame) in which the equations of motion do not depend explicitly on time. The resulting equations of motion preserve an analog of the angular momentum vector and are similar in form to the equations for the Chaplygin ball. Thus, the problem reduces to investigating a two-dimensional Poincaré map.
The case of the rubber rolling model is analyzed in detail. Numerical investigation of its Poincaré map shows the existence of chaotic trajectories, including those associated with a strange attractor. In addition, an analysis is made of the case of motion from rest, in which the problem reduces to investigating the vector field on the sphere S2.
Ключевые слова: nonholonomic mechanics, Chaplygin ball, rolling without slipping and spinning, strange attractor, straight-line motion, stability, limit cycle, balanced beaver-ball.
Финансовая поддержка Номер гранта
Российский научный фонд 18-71-00110
15-12-20035
Российский фонд фундаментальных исследований 18-29-10051 mk
Министерство образования и науки Российской Федерации 5-100
The work of I.A.Bizyaev (Section 2 and Section 4) was supported by the Russian Science Foundation (project 18-71-00110). The work of A. V. Borisov and I. S.Mamaev was supported by the RFBR Grant No. 18-29-10051 mk and was carried out at MIPT under project 5-100 for state support for leading universities of the Russian Federation. The work of A. V. Borisov (Section 1 and Appendix A) was supported by the Russian Science Foundation (project 15-12-20035).
Поступила в редакцию: 08.07.2019
Принята в печать: 26.08.2019
Реферативные базы данных:
Тип публикации: Статья
MSC: 37J60, 37C10
Язык публикации: английский
Образец цитирования: Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582
Цитирование в формате AMSBIB
\RBibitem{BizBorMam19}
\by Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev
\paper Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 5
\pages 560--582
\mathnet{http://mi.mathnet.ru/rcd1026}
\crossref{https://doi.org/10.1134/S1560354719050071}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4015396}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000488949000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073254871}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1026
  • https://www.mathnet.ru/rus/rcd/v24/i5/p560
  • Эта публикация цитируется в следующих 18 статьяx:
    1. Mariana Costa-Villegas, Luis C. García-Naranjo, “Affine Generalizations of the Nonholonomic Problem of a Convex Body Rolling without Slipping on the Plane”, Regul. Chaot. Dyn., 2025  crossref
    2. A. A. Kilin, T. B. Ivanova, “The Integrable Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint”, Rus. J. Nonlin. Dyn., 19:1 (2023), 3–17  mathnet  crossref  mathscinet
    3. A. A. Kilin, T. B. Ivanova, “The Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint”, Rus. J. Nonlin. Dyn., 19:4 (2023), 533–543  mathnet  crossref
    4. Seyed Amir Tafrishi, Mikhail Svinin, Motoji Yamamoto, Yasuhisa Hirata, “A geometric motion planning for a spin-rolling sphere on a plane”, Applied Mathematical Modelling, 121 (2023), 542  crossref
    5. Evgeniya A. Mikishanina, “Dynamics of the Chaplygin sphere with additional constraint”, Commun. Nonlinear Sci. Numer. Simul., 117 (2023), 106920–15  mathnet  crossref  isi
    6. Е. А. Микишанина, “Динамика качения сферического робота с маятниковым приводом, управляемого сервосвязью Билимовича”, ТМФ, 211:2 (2022), 281–294  mathnet  crossref  mathscinet  adsnasa; E. A. Mikishanina, “Rolling motion dynamics of a spherical robot with a pendulum actuator controlled by the Bilimovich servo-constraint”, Theoret. and Math. Phys., 211:2 (2022), 679–691  crossref
    7. Yu. L. Karavaev, “Spherical Robots: An Up-to-Date Overview of Designs and Features”, Rus. J. Nonlin. Dyn., 18:4 (2022), 709–750  mathnet  crossref  mathscinet
    8. E. A. Mikishanina, “Motion Control of a Spherical Robot with a Pendulum Actuator for Pursuing a Target”, Rus. J. Nonlin. Dyn., 18:5 (2022), 899–913  mathnet  crossref  mathscinet
    9. Alexander Kilin, Elena Pivovarova, 2021 International Conference “Nonlinearity, Information and Robotics” (NIR), 2021, 1  crossref
    10. Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236  mathnet  crossref
    11. Alexey V. Borisov, Evgeniya A. Mikishanina, “Two Nonholonomic Chaotic Systems. Part II. On the Rolling of a Nonholonomic Bundle of Two Bodies”, Regul. Chaotic Dyn., 25:4 (2020), 392–400  mathnet  crossref  mathscinet
    12. Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regul. Chaotic Dyn., 25:6 (2020), 689–706  mathnet  crossref  mathscinet
    13. A. V. Borisov, E. A. Mikishanina, “Dynamics of the Chaplygin Ball with Variable Parameters”, Rus. J. Nonlin. Dyn., 16:3 (2020), 453–462  mathnet  crossref  mathscinet
    14. А. А. Килин, Е. Н. Пивоварова, “Неинтегрируемость задачи о качении сферического волчка по вибрирующей плоскости”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 30:4 (2020), 628–644  mathnet  crossref
    15. I. A. Bizyaev, I. S. Mamaev, “Separatrix splitting and nonintegrability in the nonholonomic rolling of a generalized Chaplygin sphere”, Int. J. Non-Linear Mech., 126 (2020), 103550  crossref  mathscinet  isi  scopus
    16. A. V. Borisov, A. V. Tsiganov, “The motion of a nonholonomic Chaplygin sphere in a magnetic field, the Grioli problem, and the Barnett-London effect”, Dokl. Phys., 65:3 (2020), 90–93  crossref  isi  scopus
    17. Yury Karavaev, Alexander Kilin, Anton Klekovkin, Elena Pivovarova, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
    18. Alexey V. Borisov, Andrey V. Tsiganov, “On the Chaplygin Sphere in a Magnetic Field”, Regul. Chaotic Dyn., 24:6 (2019), 739–754  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:260
    Список литературы:54
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025