Аннотация:
The problem of rolling a nonholonomic bundle of two bodies is considered: a spherical shell with a rigid body rotating along the axis of symmetry, on which rotors spinning relative to this body are fastened. This problem can be regarded as a distant generalization of the Chaplygin ball problem. The reduced system is studied by analyzing Poincaré maps constructed in Andoyer – Deprit variables. A classification of Poincaré maps of the reduced system is carried out, the behavior of the contact point is studied, and the cases of chaotic oscillations of the system are examined in detail. To study the nature of the system’s chaotic behavior, a map of dynamical regimes is constructed. The Feigenbaum type of attractor is shown.
The work was supported by RFBR grant 18-29-10051 mk and was carried out at MIPT under
project 5-100 for state support for leading universities of the Russian Federation.
Поступила в редакцию: 11.05.2020 Принята в печать: 17.06.2020
Образец цитирования:
Alexey V. Borisov, Evgeniya A. Mikishanina, “Two Nonholonomic Chaotic Systems. Part II. On the Rolling of a Nonholonomic Bundle of Two Bodies”, Regul. Chaotic Dyn., 25:4 (2020), 392–400
\RBibitem{BorMik20}
\by Alexey V. Borisov, Evgeniya A. Mikishanina
\paper Two Nonholonomic Chaotic Systems. Part II. On the Rolling of a Nonholonomic Bundle of Two Bodies
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 4
\pages 392--400
\mathnet{http://mi.mathnet.ru/rcd1072}
\crossref{https://doi.org/10.1134/S1560354720040061}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4129620}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000554730100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088789523}
E. A. Mikishanina, “Control of a Spherical Robot with a Nonholonomic Omniwheel Hinge Inside”, Rus. J. Nonlin. Dyn., 20:1 (2024), 179–193
Е. А. Микишанина, “Динамика качения диска с наклонной скользящей опорой”, Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2021, № 3, 45–56