Аннотация:
Let the adiabatic invariant of action variable in a slow-fast Hamiltonian system with two degrees of freedom have limits along the trajectories as time tends to plus and minus infinity. The difference of these two limits is exponentially small in analytic systems. An isoenergetic reduction and canonical transformations are applied to transform the slow-fast system to form of a system depending on a slowly varying parameter in a complexified phase space. On the basis of this method an estimate for the accuracy of conservation of adiabatic invariant is given.
Образец цитирования:
Tan Su, “On the Accuracy of Conservation of Adiabatic Invariants in Slow-Fast Hamiltonian Systems”, Regul. Chaotic Dyn., 17:1 (2012), 54–62
\RBibitem{Su12}
\by Tan Su
\paper On the Accuracy of Conservation of Adiabatic Invariants in Slow-Fast Hamiltonian Systems
\jour Regul. Chaotic Dyn.
\yr 2012
\vol 17
\issue 1
\pages 54--62
\mathnet{http://mi.mathnet.ru/rcd382}
\crossref{https://doi.org/10.1134/S1560354712010054}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd382
https://www.mathnet.ru/rus/rcd/v17/i1/p54
Эта публикация цитируется в следующих 7 статьяx:
A. V. Artemyev, A. I. Neishtadt, V. Angelopoulos, “On the Role of Whistler‐Mode Waves in Electron Interaction With Dipolarizing Flux Bundles”, JGR Space Physics, 127:4 (2022)
Lukin A.S. Artemyev V A. Petrukovich A.A. Zhang X.-J., “Charged Particle Scattering in Dipolarized Magnetotail”, Phys. Plasmas, 28:10 (2021), 102901
Choi J.R., “The Rayleigh-Lorentz Invariant For Superconducting Resonators and Optimal Adiabatic Qubit-Information Detection”, Sci Rep, 11:1 (2021), 13722
A. V. Artemyev, O. V. Agapitov, F. S. Mozer, H. Spence, “Butterfly pitch angle distribution of relativistic electrons in the outer radiation belt: Evidence of nonadiabatic scattering”, JGR Space Physics, 120:6 (2015), 4279
Christian Kuehn, Applied Mathematical Sciences, 191, Multiple Time Scale Dynamics, 2015, 619
Jeong Ryeol Choi, “Hamiltonian Dynamics and Adiabatic Invariants for Time-Dependent Superconducting Qubit-Oscillators and Resonators in Quantum Computing Systems”, Advances in Mathematical Physics, 2015 (2015), 1
Tan Su, “On the Accuracy of Conservation of Adiabatic Invariants in Slow-Fast Hamiltonian Systems”, Regul. Chaotic Dyn., 17:1 (2012), 54–62