Аннотация:
In this paper we consider the motion of a dynamically asymmetric unbalanced ball on a plane in a gravitational field. The point of contact of the ball with the plane is subject to a nonholonomic constraint which forbids slipping. The motion of the ball is governed by the nonholonomic reversible system of 6 differential equations. In the case of arbitrary displacement of the center of mass of the ball the system under consideration is a nonintegrable system without an invariant measure. Using qualitative and quantitative analysis we show that the unbalanced ball exhibits reversal (the phenomenon of reversal of the direction of rotation) for some parameter values. Moreover, by constructing charts of Lyaponov exponents we find a few types of strange attractors in the system, including the so-called figure-eight attractor which belongs to the genuine strange attractors of pseudohyperbolic type.
Ключевые слова:
rolling without slipping, reversibility, involution, integrability, reversal, chart of Lyapunov exponents, strange attractor.
The work of A. V. Borisov was supported by the Ministry of Education and Science of the Russian
Federation within the framework of the basic part of the state assignment to institutions of higher
education. The work of A. O. Kazakov on Section 3 was supported by the grant of the Russian
Scientific Foundation No 14-12-00811, the work of Section 4.1 was partially supported by the grant
of the Russian Scientific Foundation 14-41-00044 and by the grant of the President of the Russian
Federation for support of young doctors of science MD-2324.2013.1. The remaining part of the
work of A. O. Kazakov was supported by the Ministry of Education and Science (project No 2000).
The work of I. R. Sataev was supported by the grant of the President of the Russian Federation for
support of leading scientific schools NSh-1726.2014.2.
Поступила в редакцию: 26.08.2014 Принята в печать: 08.09.2014
Образец цитирования:
Alexey V. Borisov, Alexey O. Kazakov, Igor R. Sataev, “The Reversal and Chaotic Attractor in the Nonholonomic Model of Chaplygin’s Top”, Regul. Chaotic Dyn., 19:6 (2014), 718–733
\RBibitem{BorKazSat14}
\by Alexey~V.~Borisov, Alexey~O.~Kazakov, Igor~R.~Sataev
\paper The Reversal and Chaotic Attractor in the Nonholonomic Model of Chaplygin’s Top
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 6
\pages 718--733
\mathnet{http://mi.mathnet.ru/rcd194}
\crossref{https://doi.org/10.1134/S1560354714060094}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3284611}
\zmath{https://zbmath.org/?q=an:06507829}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000345996200009}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd194
https://www.mathnet.ru/rus/rcd/v19/i6/p718
Эта публикация цитируется в следующих 62 статьяx:
Artyom E. Emelin, Evgeny A. Grines, Tatiana A. Levanova, “Chaos in Coupled Heteroclinic Cycles Between Weak Chimeras”, Regul. Chaotic Dyn., 29:1 (2024), 205–217
S. V. Gonchenko, A. S. Gonchenko, K. E. Morozov, “The Third Type of Dynamics and Poincaré Homoclinic Trajectories”, Radiophys Quantum El, 66:9 (2024), 693
С. В. Гонченко, А. С. Гонченко, А. О. Казаков, Е. А. Самылина, “Смешанная динамика: элементы теории и примеры”, Известия вузов. ПНД, 32:6 (2024), 722–765
Sergey M. Olenin, Tatiana A. Levanova, Sergey V. Stasenko, “Dynamics in the Reduced Mean-Field Model of Neuron–Glial Interaction”, Mathematics, 11:9 (2023), 2143
Evgeniya A. Mikishanina, “Dynamics of the generalized penny-model on the rotating plane”, Eur. Phys. J. B, 96 (2023), 15–8
Ivan A. Bizyaev, Ivan S. Mamaev, “Permanent Rotations in Nonholonomic Mechanics.
Omnirotational Ellipsoid”, Regul. Chaotic Dyn., 27:6 (2022), 587–612
Sergey Gonchenko, Efrosiniia Karatetskaia, Alexey Kazakov, Vyacheslav Kruglov, “Conjoined Lorenz twins—a new pseudohyperbolic attractor in three-dimensional maps and flows”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:12 (2022)
Evgeny A. Grines, Alexey Kazakov, Igor R. Sataev, “On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:9 (2022)
Gonchenko A.S. Gonchenko M.S. Kozlov A.D. Samylina E.A., “On Scenarios of the Onset of Homoclinic Attractors in Three-Dimensional Non-Orientable Maps”, Chaos, 31:4 (2021), 043122
Gonchenko S. Gonchenko A. Kazakov A. Samylina E., “On Discrete Lorenz-Like Attractors”, Chaos, 31:2 (2021), 023117
Kruglov V.P., Kuptsov V P., “Theoretical Models of Physical Systems With Rough Chaos”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 29:1 (2021), 35–77
M. Kainov, A. Kazakov, “On Examples of Pseudohyperbolic Attractors in Flows and Maps”, Lobachevskii J Math, 42:14 (2021), 3451
С. В. Гонченко, А. С. Гонченко, А. О. Казаков, “Три типа аттракторов и смешанная динамика неголономных моделей движения твердого тела”, Дифференциальные уравнения и динамические системы, Сборник статей, Труды МИАН, 308, МИАН, М., 2020, 135–151; S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, “Three Types of Attractors and Mixed Dynamics of Nonholonomic Models of Rigid Body Motion”, Proc. Steklov Inst. Math., 308 (2020), 125–140
Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regul. Chaotic Dyn., 25:6 (2020), 689–706
Kuznetsov S.P. Kruglov V.P. Borisov A.V., “Chaplygin Sleigh in the Quadratic Potential Field”, EPL, 132:2 (2020), 20008
Bizyaev I.A. Mamaev I.S., “Dynamics of the Nonholonomic Suslov Problem Under Periodic Control: Unbounded Speedup and Strange Attractors”, J. Phys. A-Math. Theor., 53:18 (2020), 185701
Putkaradze V. Rogers S., “on the Optimal Control of a Rolling Ball Robot Actuated By Internal Point Masses”, J. Dyn. Syst. Meas. Control-Trans. ASME, 142:5 (2020)
A. S. Gonchenko, E. A. Samylina, “On the region of existence of a discrete Lorenz attractor in the nonholonomic model of a celtic stone”, Radiophys. Quantum Electron., 62:5 (2019), 369–384
A. V. Borisov, E. V. Vetchanin, I. S. Mamaev, “Motion of a smooth foil in a fluid under the action of external periodic forces. I”, Russ. J. Math. Phys., 26:4 (2019), 412–427
I. A. Bizyaev, A. V. Borisov, V. V. Kozlov, I. S. Mamaev, “Fermi-like acceleration and power-law energy growth in nonholonomic systems”, Nonlinearity, 32:9 (2019), 3209–3233