Аннотация:
Описана асимптотика спектра оператора
ˆH(x,−ıh∂∂x)=−h2∂2∂x2+ı(cosx+cos2x)
при h→0. Показано, что спектр концентрируется вблизи некоторого графа на комплексной плоскости. Получены уравнения на собственные значения, которые представляют собой условия на периоды голоморфной формы на соответствующей римановой поверхности.
Библиография: 15 названий.
Образец цитирования:
А. И. Есина, А. И. Шафаревич, “Условия квантования на римановых поверхностях и квазиклассический спектр оператора Шрёдингера с комплексным потенциалом”, Матем. заметки, 88:2 (2010), 229–248; Math. Notes, 88:2 (2010), 209–227
D.I. Borisov, D.M. Polyakov, “Uniform Spectral Asymptotics for a Schrödinger Operator on a Segment with Delta-Interaction”, Russ. J. Math. Phys., 31:2 (2024), 149
A.A. Arzhanov, S.A. Stepin, V.A. Titov, V.V. Fufaev, “Stokes Phenomenon and Spectral Locus in a Problem of Singular Perturbation Theory”, Russ. J. Math. Phys., 31:3 (2024), 351
Stepin S.A., Fufaev V.V., “Wkb Asymptotics and Spectral Deformation in Semi-Classical Limit”, J. Dyn. Control Syst., 26:1 (2020), 175–198
Stepin S.A., Fufaev V.V., “Spectral Deformation in a Problem of Singular Perturbation Theory”, Dokl. Math., 99:1 (2019), 60–63
Shafarevich A., “Quantization Conditions on Riemannian Surfaces and Spectral Series of Non-Selfadjoint Operators”, Formal and Analytic Solutions of Diff. Equations, Springer Proceedings in Mathematics & Statistics, 256, ed. Filipuk G. Lastra A. Michalik S., Springer, 2018, 177–187
A. A. Shkalikov, S. N. Tumanov, “Spectral Portraits in the Semi-Classical Approximation of the Sturm-Liouville Problem with a Complex Potential”, J. Phys.: Conf. Ser., 1141 (2018), 012155
С. А. Степин, В. В. Фуфаев, “Метод фазовых интегралов в одной задаче сингулярной теории возмущений”, Изв. РАН. Сер. матем., 81:2 (2017), 129–160; S. A. Stepin, V. V. Fufaev, “The phase-integral method in a problem of singular perturbation theory”, Izv. Math., 81:2 (2017), 359–390
В. В. Фуфаев, “О линиях уровня гармонических функций, связанных с некоторыми абелевыми интегралами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2017, № 1, 16–25; V. V. Fufaev, “Level lines of harmonic functions related to some Abelian integrals”, Moscow University Mathematics Bulletin, 72:1 (2017), 15–23
Д. В. Нехаев, А. И. Шафаревич, “Квазиклассический предел спектра оператора Шрёдингера с комплексным периодическим потенциалом”, Матем. сб., 208:10 (2017), 126–148; D. V. Nekhaev, A. I. Shafarevich, “A quasiclassical limit of the spectrum of a Schrödinger operator with complex periodic potential”, Sb. Math., 208:10 (2017), 1535–1556
A. Ифа, М. Мадхби, М. Рулё, “Обобщенные правила квантования Бора–Зоммерфельда для операторов, обладающих свойством PT симметрии”, Матем. заметки, 99:5 (2016), 673–683; A. Ifa, N. M'Hadbi, M. Rouleux, “On Generalized Bohr–Sommerfeld Quantization Rules for Operators with PT Symmetry”, Math. Notes, 99:5 (2016), 676–684
Tumanov S.N. Shkalikov A.A., “the Limit Spectral Graph in Semiclassical Approximation For the Sturm-Liouville Problem With Complex Polynomial Potential”, Dokl. Math., 92:3 (2015), 773–777
А. И. Есина, А. И. Шафаревич, “Асимптотика спектра и собственных функций оператора магнитной индукции на компактной двумерной поверхности вращения”, Матем. заметки, 95:3 (2014), 417–432; A. I. Esina, A. I. Shafarevich, “Asymptotics of the Spectrum and Eigenfunctions of the Magnetic Induction Operator on a Compact Two-Dimensional Surface of Revolution”, Math. Notes, 95:3 (2014), 374–387
Tobias Gulden, Michael Janas, Alex Kamenev, “Riemann surface dynamics of periodic non-Hermitian Hamiltonians”, J. Phys. A: Math. Theor., 47:8 (2014), 085001
В. П. Маслов, “Распределение типа распределения Бозе–Эйнштейна для неидеального газа. Двухжидкостная модель надкритического состояния и ее приложения”, Матем. заметки, 94:2 (2013), 237–245; V. P. Maslov, “Bose–Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications”, Math. Notes, 94:2 (2013), 231–237
Esina A.I., Shafarevich A.I., “Analogs of Bohr-Sommerfeld-Maslov Quantization Conditions on Riemann Surfaces and Spectral Series of Nonself-Adjoint Operators”, Russ. J. Math. Phys., 20:2 (2013), 172–181
Maslov V.P., Maslova T.V., “Parastatistics and Phase Transition From a Cluster as a Fluctuation to a Cluster as a Distinguishable Object”, Russ. J. Math. Phys., 20:4 (2013), 468–475