Аннотация:
В работе получены асимптотические формулы при x→∞
для фундаментальной системы решений уравнения вида
l(y):=(−1)n(p(x)y(n))(n)+q(x)y=λy,x∈[1,∞),
где локально суммируемая функция p допускает представление
p(x)=(1+r(x))−1,r∈L1(1,∞),
а q – обобщенная функция, представимая при некотором фиксированном k, 0⩽k⩽n, в виде
q=σ(k), где
σ∈L1(1,∞),еслиk<n,|σ|(1+|r|)(1+|σ|)∈L1(1,∞),еслиk=n.
Аналогичные результаты получены для функций, допускающих при некотором фиксированном k, 0⩽k⩽n, представление
p(x)=x2n+ν(1+r(x))−1,q=σ(k),σ(x)=xk+ν(β+s(x)),
где функции r и
s удовлетворяют некоторым условиям интегрального убывания. Получены также теоремы об индексах дефекта минимального симметрического оператора, порожденного дифференциальным выражением l(y)
(при условии вещественности функций p и q), и теоремы о спектрах соответствующих самосопряженных расширений. Полные доказательства даны только для случая n=1.
Библиография: 18 названий.
Ключевые слова:
дифференциальные операторы с коэффициентами-распределениями, квазипроизводные,
асимптотика решений дифференциальных уравнений, дефектные числа дифференциального оператора.
Результаты, представленные в теоремах 1, 2, 4
этой работы, получены при поддержке Российского научного фонда
(грант № 17-11-01215); результаты, представленные
в теоремах 3 и 5, получены при поддержке Российского
фонда фундаментальных исследований (грант № 18-01-00250).
Образец цитирования:
Н. Н. Конечная, К. А. Мирзоев, А. А. Шкаликов, “Об асимптотике решений двучленных дифференциальных уравнений с сингулярными коэффициентами”, Матем. заметки, 104:2 (2018), 231–242; Math. Notes, 104:2 (2018), 244–252
Yaudat T. Sultanaev, Nur F. Valeev, Elvira A. Nazirova, “On the Asymptotic of Solutions of Odd-Order Two-Term Differential Equations”, Mathematics, 12:2 (2024), 213
Ya. T. Sultanaev, N. F. Valeev, E. A. Nazirova, “On the Asymptotic Behavior of Solutions of Third-Order
Binomial Differential Equations”, Diff Equat, 60:2 (2024), 259
Ya. T. Sultanaev, N. F. Valeev, E. A. Nazirova, “On the asymptotic behavior of solutions of third-order binomial differential equations”, Differencialʹnye uravneniâ, 60:2 (2024), 273
Н. Н. Конечная, К. А. Мирзоев, А. А. Шкаликов, “Об асимптотике решений двучленных дифференциальных уравнений”, Матем. заметки, 113:2 (2023), 217–235; N. N. Konechnaja, K. A. Mirzoev, A. A. Shkalikov, “Asymptotics of Solutions of Two-Term Differential Equations”, Math. Notes, 113:2 (2023), 228–242
N. P. Bondarenko, “Linear differential operators with distribution coefficients of various singularity orders”, Math. Methods in App. Sciences, 46:6 (2023), 6639
E. E. Chitorkin, N. P. Bondarenko, “Solving the inverse Sturm–Liouville problem with singular potential and with polynomials in the boundary conditions”, Anal. Math. Phys., 13:5 (2023), 79
Н. Ф. Валеев, Я. Т. Султанаев, Э. А. Назирова, “Построение асимптотик решений дифференциальных уравнений Штурма–Лиувилля в классах осциллирующих коэффициентов”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2023, № 5, 61–65; N. F. Valeev, È. A. Nazirova, Ya. T. Sultanaev, “Construction of asymptotics of solutions to the Sturm–Liouville differential equations in the class of oscillating coefficients”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 78:5 (2023), 253–257
Л. Н. Валеева, Э. А. Назирова, Я. Т. Султанаев, “Об одном методе исследования асимптотики решений
дифференциальных уравнений Штурма–Лиувилля
с быстро осциллирующими коэффициентами”, Матем. заметки, 112:6 (2022), 935–940; L. N. Valeeva, È. A. Nazirova, Ya. T. Sultanaev, “On a Method for Studying the Asymptotics of Solutions of Sturm–Liouville Differential Equations with Rapidly Oscillating Coefficients”, Math. Notes, 112:6 (2022), 1059–1064
Н. Ф. Валеев, Э. А. Назирова, Я. Т. Султанаев, “Об одном методе исследования асимптотики решений дифференциальных
уравнений нечетного порядка с осциллирующими коэффициентами”, Матем. заметки, 109:6 (2021), 938–943; N. F. Valeev, È. A. Nazirova, Ya. T. Sultanaev, “On a Method for Studying the Asymptotics of Solutions of Odd-Order Differential Equations with Oscillating Coefficients”, Math. Notes, 109:6 (2021), 980–985
Д. А. Чечин, А. Д. Баев, С. А. Шабров, “Об одной граничной задаче с разрывными решениями и сильной нелинейностью”, Материалы Воронежской весенней математической школы
«Современные методы теории краевых задач. Понтрягинские чтения–XXX». Воронеж, 3–9 мая 2019 г. Часть 4, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 193, ВИНИТИ РАН, М., 2021, 153–157
N. P. Bondarenko, “Solving an inverse problem for the Sturm-Liouville operator with singular potential by Yurko's method”, Tamkang J. Math., 52:1, SI (2021), 125–154
К. А. Мирзоев, Н. Н. Конечная, “Об асимптотике решений линейных дифференциальных уравнений нечетного порядка”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 1, 23–28; K. A. Mirzoev, N. N. Konechnaja, “Asymptotics of solutions to linear differential equations of odd order”, Moscow University Mathematics Bulletin, 75:1 (2020), 22–26
Ch. Gao, M. Ran, “Spectral properties of a fourth-order eigenvalue problem with quadratic spectral parameters in a boundary condition”, AIMS Math., 5:2 (2020), 904–922
А. Д. Баев, Д. А. Чечин, М. Б. Зверева, С. А. Шабров, “Дифференциал Стилтьеса в импульсных нелинейных задачах”, Докл. РАН. Матем., информ., проц. упр., 490 (2020), 9–12; A. D. Baev, D. A. Chechin, M. B. Zvereva, S. A. Shabrov, “Stieltjes differential in impulse nonlinear problems”, Dokl. Math., 101:1 (2020), 5–8
M. Yu. Ignatiev, “OnWeyl-type Solutions of Differential Systems with a Singularity. The Case of Discontinuous Potential”, Матем. заметки, 108:6 (2020), 814–826; M. Yu. Ignatiev, “OnWeyl-type Solutions of Differential Systems with a Singularity. The Case of Discontinuous Potential”, Math. Notes, 108:6 (2020), 814–826
Н. Н. Конечная, К. А. Мирзоев, “Главный член асимптотики решений линейных дифференциальных уравнений с коэффициентами-распределениями первого порядка”, Матем. заметки, 106:1 (2019), 74–83; N. N. Konechnaja, K. A. Mirzoev, “The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients”, Math. Notes, 106:1 (2019), 81–88