Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Математическое моделирование
Использование связных масок в задаче восстановления изображения изолированной частицы по данным рентгеновского рассеяния. III. Стратегии отбора решений по результатам максимизации правдоподобия
Аннотация:
Основное экспериментальное ограничение биологической кристаллографии связано с необходимостью приготовления исследуемого объекта в виде монокристалла. Ввод в эксплуатацию новых мощных источников рентгеновского излучения — рентгеновских лазеров на свободных электронах — позволяет ставить вопрос о практическом определении структуры изолированных биологических макромолекул и их комплексов. Дополнительным преимуществом работы с изолированными частицами является возможность получения информации о рассеянии во всех направлениях, а не только направлениях, ограниченных условиями дифракции Лауэ–Брэгга. Это существенно облегчает решение фазовой проблемы рентгеноструктурного анализа — определения значений фаз структурных факторов, недоступных для измерения в эксперименте. Данная работа посвящена двум направлениям развития предложенного ранее авторами метода решения фазовой проблемы, основанного на случайном сканировании конфигурационного пространства потенциальных решений фазовой проблемы. В работе предложен новый тип критерия отбора в процессе сканирования кандидатов на решение фазовой проблемы, включающий максимизацию статистического правдоподобия, и показана (в тестовых расчетах) его эффективность. Второе направление связано с выбором оптимальной стратегии сканирования. Показано, что в данном подходе постепенное расширение используемого в работе набора экспериментальных данных позволяет получать решения более высокого качества, нежели при одновременном включении в работу всех имеющихся данных. Такое расширение может осуществляться в неявном виде использованием в работе синтезов Фурье электронной плотности, взвешенных показателями достоверности имеющихся значений фаз.
Работа была поддержана грантом РФФИ 16-04-01037а. Работа А.Г. Уржумцева была поддержана ресурсами FRISBI (Французской инфраструктуры Интегральной структурной биологии, ANR-10-INBS-05) и Instruct-ERIC.
Материал поступил в редакцию 29.11.2017, опубликован 13.12.2017
Тип публикации:
Статья
УДК:
577.3
Образец цитирования:
Н. Л. Лунина, Т. Е. Петрова, А. Г. Уржумцев, В. Ю. Лунин, “Использование связных масок в задаче восстановления изображения изолированной частицы по данным рентгеновского рассеяния. III. Стратегии отбора решений по результатам максимизации правдоподобия”, Матем. биология и биоинформ., 12:2 (2017), 521–535
\RBibitem{LunPetUrz17}
\by Н.~Л.~Лунина, Т.~Е.~Петрова, А.~Г.~Уржумцев, В.~Ю.~Лунин
\paper Использование связных масок в задаче восстановления изображения изолированной частицы по данным рентгеновского рассеяния. III.~Стратегии отбора решений по результатам максимизации правдоподобия
\jour Матем. биология и биоинформ.
\yr 2017
\vol 12
\issue 2
\pages 521--535
\mathnet{http://mi.mathnet.ru/mbb310}
\crossref{https://doi.org/10.17537/2017.12.521}
Т. Е. Петрова, В. Ю. Лунин, “Определение структуры биологических макромолекулярных частиц с использованием рентгеновских лазеров. Достижения и перспективы”, Матем. биология и биоинформ., 15:2 (2020), 195–234
В. Ю. Лунин, Н. Л. Лунина, Т. Е. Петрова, “Исследование одиночных частиц дифракционными методами: кристаллографический подход”, Матем. биология и биоинформ., 14, Suppl. (2019), 44–61