Аннотация:
Анализируются возможные подходы к построению неравновесных уравнений из первых принципов: задание начального состояния в момент t=0 и исследование асимптотики при t→∞, и методы усреднения по начальным моментам времени или граничные условия в отдаленном прошлом. На простых примерах сравниваются методы проекционного оператора, неравновесного статистического оператора (в двух вариантах), Кубо–Иокота–Накаджима, Мори, Робертсона, Кавасаки–Гантона, Каданова–Мартина и др.
Библ. 159.
Образец цитирования:
Д. Н. Зубарев, “Современные методы статистической теории неравновесных процессов”, Итоги науки и техн. Сер. Соврем. пробл. мат., 15, ВИНИТИ, М., 1980, 131–226; J. Soviet Math., 16:6 (1981), 1509–1571
\RBibitem{Zub80}
\by Д.~Н.~Зубарев
\paper Современные методы статистической теории неравновесных процессов
\serial Итоги науки и техн. Сер. Соврем. пробл. мат.
\yr 1980
\vol 15
\pages 131--226
\publ ВИНИТИ
\publaddr М.
\mathnet{http://mi.mathnet.ru/intd43}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=578992}
\zmath{https://zbmath.org/?q=an:0441.60099}
\transl
\jour J. Soviet Math.
\yr 1981
\vol 16
\issue 6
\pages 1509--1571
\crossref{https://doi.org/10.1007/BF01091712}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/intd43
https://www.mathnet.ru/rus/intd/v15/p131
Эта публикация цитируется в следующих 57 статьяx:
V. V. Ryazanov, “Comparison of extended irreversible thermodynamics and nonequilibrium statistical operator method with thermodynamics based on a distribution containing the first-passage time”, Continuum Mech. Thermodyn., 2024
P. P. Kostrobij, F. O. Ivashchyshyn, B. M. Markovych, M. V. Tokarchuk, “Microscopic theory of the influence of dipole superparamagnetics (type <beta-CD<FeSO_4») on current flow in semiconductor layered structures (type GaSe, InSe)”, Math. Model. Comput., 8:1 (2021), 89
P. Kostrobij, M. Tokarchuk, B. Markovych, I. Ryzha, “Generalized diffusion equation with nonlocality of space-time: Analytical and numerical analysis”, Journal of Mathematical Physics, 62:10 (2021)
P. Kostrobij, B. Markovych, O. Viznovych, I. Zelinska, M. Tokarchuk, “Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations”, Math. Model. Comput., 6:1 (2019), 58
P.P. Kostrobij, B.M. Markovych, O.V. Viznovych, M.V. Tokarchuk, “Generalized transport equation with nonlocality of space–time. Zubarev's NSO method”, Physica A: Statistical Mechanics and its Applications, 514 (2019), 63
P. P. Kostrobij, B. M. Markovych, I. A. Ryzha, M. V. Tokarchuk, “Generalized kinetic equation with spatio-temporal nonlocality”, Math. Model. Comput., 6:2 (2019), 289
Р. Луцци, А. Р. Васкончеллос, Х. Г. Рамос, К. Г. Родригез, “Статистическая термодинамика необратимых процессов в рамках метода неравновесного статистического оператора Зубарева”, ТМФ, 194:1 (2018), 7–38; R. Luzzi, A. R. Vasconcellos, J. G. Ramos, C. G. Rodrigues, “Statistical irreversible thermodynamics in the framework of Zubarev's nonequilibrium statistical operator method”, Theoret. and Math. Phys., 194:1 (2018), 4–29
П. А. Глушак, Б. Б. Маркив, М. В. Токарчук, “Метод неравновесного статистического оператора Зубарева в обобщенной статистике многочастичных систем”, ТМФ, 194:1 (2018), 71–89; P. A. Glushak, B. B. Markiv, M. V. Tokarchuk, “Zubarev's nonequilibrium statistical operator method in the generalized statistics of multiparticle systems”, Theoret. and Math. Phys., 194:1 (2018), 57–73
P. Kostrobij, I. Grygorchak, F. Ivashchyshyn, B. Markovych, O. Viznovych, M. Tokarchuk, “Generalized Electrodiffusion Equation with Fractality of Space–Time: Experiment and Theory”, J. Phys. Chem. A, 122:16 (2018), 4099
P. Kostrobij, B. Markovych, O. Viznovych, M. Tokarchuk, “Generalized diffusion equation with fractional derivatives within Renyi statistics”, Journal of Mathematical Physics, 57:9 (2016)
Clóves Gonçalves Rodrigues, Áurea Rosas Vasconcellos, Roberto Luzzi, “Topics in Present-day Science Technology and Innovation: Ultrafast Relaxation Processes in Semiconductors”, Mat. Res., 18:3 (2015), 453
Yu. I. Meshcheryakov, T. A. Khantuleva, “Nonequilibrium processes in condensed media: Part 1. Experimental studies in light of nonlocal transport theory”, Phys Mesomech, 18:3 (2015), 228
Clóves G. Rodrigues, “Onset for the Electron Velocity Overshoot in Indium Nitride”, Chinese Phys. Lett., 29:12 (2012), 127201
Ю. А. Кашлев, “Две стадии движения ангармонических осцилляторов, моделирующих быстрые частицы в кристаллах”, ТМФ, 167:1 (2011), 123–135; Yu. A. Kashlev, “Two stages of motion of anharmonic oscillators modeling fast particles in crystals”, Theoret. and Math. Phys., 167:1 (2011), 506–516
David M. Rogers, Thomas L. Beck, Susan B. Rempe, “An Information Theory Approach to Nonlinear, Nonequilibrium Thermodynamics”, J Stat Phys, 145:2 (2011), 385
E. A. Polyakov, A. P. Lyubartsev, P. N. Vorontsov-Velyaminov, “Centroid molecular dynamics: Comparison with exact results for model systems”, The Journal of Chemical Physics, 133:19 (2010)
Ю. А. Кашлев, “Уравнение баланса и квазитемпература каналированных частиц в состоянии квазиравновесия”, ТМФ, 161:2 (2009), 256–266; Yu. A. Kashlev, “Balance equation and the quasitemperature of channeled particles in equilibrium”, Theoret. and Math. Phys., 161:2 (2009), 1540–1548
Б. Б. Маркив, И. П. Омелян, М. В. Токарчук, “Неравновесный статистический оператор в обобщенной молекулярной гидродинамике жидкостей”, ТМФ, 154:1 (2008), 91–101; B. B. Markiv, I. P. Omelyan, M. V. Tokarchuk, “Nonequilibrium statistical operator in the generalized molecular hydrodynamics of fluids”, Theoret. and Math. Phys., 154:1 (2008), 75–84
A. L. KUZEMSKY, “THEORY OF TRANSPORT PROCESSES AND THE METHOD OF THE NONEQUILIBRIUM STATISTICAL OPERATOR”, Int. J. Mod. Phys. B, 21:17 (2007), 2821
V. V. Ryazanov, “Nonequilibrium statistical operators for systems with finite lifetime”, Low Temperature Physics, 33:9 (2007), 800