Известия Российской академии наук. Серия математическая
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. РАН. Сер. матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия Российской академии наук. Серия математическая, 2017, том 81, выпуск 5, страницы 3–14
DOI: https://doi.org/10.4213/im8631
(Mi im8631)
 

Эта публикация цитируется в 12 научных статьях (всего в 12 статьях)

О свободных группах бесконечно базируемых многообразий С. И. Адяна

С. И. Адянa, В. С. Атабекянb

a Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
b Ереванский государственный университет
Список литературы:
Аннотация: В работе исследуются свободные группы многообразий, задаваемых произвольным набором тождеств из известной бесконечной независимой системы тождеств от двух переменных, построенной С. И. Адяном для решения проблемы конечного базиса теории групп. Доказывается, что в относительно свободных группах рассматриваемых групповых многообразий централизатор любого элемента есть циклическая группа, и для каждого m>1m>1 множество всех неизоморфных свободных групп ранга mm этих многообразий континуально. Все указанные группы имеют тривиальный центр, любая их абелева подгруппа – циклическая и любая их нетривиальная нормальная подгруппа – бесконечна. Для свободных групп ΓΓ всех этих многообразий получен также ответ на вопрос об описании автоморфизмов полугруппы End(Γ)End(Γ), поставленный Б. И. Плоткиным в 2000 г. В частности, доказано, что группа автоморфизмов полугруппы End(Γ)End(Γ) любой из этих групп ΓΓ канонически вложена в группу Aut(Aut(Γ))Aut(Aut(Γ)).
Библиография: 13 наименований.
Ключевые слова: бесконечно базируемое многообразие, самоцентрализуемая подгруппа, полугруппа эндоморфизмов, группа автоморфизмов, свободная бернсайдова группа.
Финансовая поддержка Номер гранта
Российский научный фонд 14-50-00005
Министерство образования и науки Российской Федерации
Государственный комитет по науке министерства образования и науки Республики Армения 15T-1A258
Параграфы 1, 3 статьи выполнены С. И. Адяном, а параграфы 2, 4 – В. С. Атабекяном. Исследование С. И. Адяна выполнено за счет гранта Российского научного фонда (проект № 14-50-00005) в Математическом институте им. В. А. Стеклова Российской академии наук. Исследование В. С. Атабекяна выполнено в Российско-Армянском университете за счет средств, выделенных в рамках субсидии МОН РФ на финансирование научно-исследовательской деятельности РАУ и при финансовой поддержке Государственного комитета науки МОН Республики Армения в рамках научного проекта 15T-1A258.
Поступило в редакцию: 21.11.2016
Англоязычная версия:
Izvestiya: Mathematics, 2017, Volume 81, Issue 5, Pages 889–900
DOI: https://doi.org/10.1070/IM8631
Реферативные базы данных:
Тип публикации: Статья
УДК: 512.54
MSC: Primary 20F50; Secondary 20F05, 20E22, 20E26
Образец цитирования: С. И. Адян, В. С. Атабекян, “О свободных группах бесконечно базируемых многообразий С. И. Адяна”, Изв. РАН. Сер. матем., 81:5 (2017), 3–14; Izv. Math., 81:5 (2017), 889–900
Цитирование в формате AMSBIB
\RBibitem{AdiAta17}
\by С.~И.~Адян, В.~С.~Атабекян
\paper О свободных группах бесконечно базируемых многообразий С.\,И.~Адяна
\jour Изв. РАН. Сер. матем.
\yr 2017
\vol 81
\issue 5
\pages 3--14
\mathnet{http://mi.mathnet.ru/im8631}
\crossref{https://doi.org/10.4213/im8631}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3706859}
\zmath{https://zbmath.org/?q=an:1436.20044}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81..889A}
\elib{https://elibrary.ru/item.asp?id=30512277}
\transl
\jour Izv. Math.
\yr 2017
\vol 81
\issue 5
\pages 889--900
\crossref{https://doi.org/10.1070/IM8631}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416408800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040978056}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/im8631
  • https://doi.org/10.4213/im8631
  • https://www.mathnet.ru/rus/im/v81/i5/p3
  • Эта публикация цитируется в следующих 12 статьяx:
    1. G. G. Gevorgyan, “On Schur multiplier of some relatively free groups”, Уч. записки ЕГУ, сер. Физика и Математика, 56:1 (2022), 1–6  mathnet  crossref  mathscinet
    2. V. S. Atabekyan, G. G. Gevorkyan, “Central extensions of nn-torsion groups”, J. Contemp. Math. Anal.-Armen. Aca., 57:1 (2022), 26–34  crossref  isi
    3. В. С. Атабекян, Л. Д. Беклемишев, В. С. Губа, И. Г. Лысёнок, А. А. Разборов, А. Л. Семенов, “Вопросы алгебры и математической логики. Научное наследие С. И. Адяна”, УМН, 76:1(457) (2021), 3–30  mathnet  crossref  mathscinet  zmath  adsnasa; V. S. Atabekyan, L. D. Beklemishev, V. S. Guba, I. G. Lysenok, A. A. Razborov, A. L. Semenov, “Questions in algebra and mathematical logic. Scientific heritage of S. I. Adian”, Russian Math. Surveys, 76:1 (2021), 1–27  crossref  isi  elib
    4. С. И. Адян, В. С. Атабекян, “О нормальных автоморфизмах свободных групп бесконечно базируемых многообразий”, Матем. заметки, 108:2 (2020), 163–170  mathnet  crossref  mathscinet; S. I. Adian, V. S. Atabekyan, “Normal Automorphisms of Free Groups of Infinitely Based Varieties”, Math. Notes, 108:2 (2020), 149–154  crossref  isi  elib
    5. V. S. Atabekyan, “The set of 22-genereted CC-simple relatively free groups has the cardinality of the continuum”, Уч. записки ЕГУ, сер. Физика и Математика, 54:2 (2020), 81–86  mathnet  crossref
    6. A. L. Gevorgyan, G. G. Gevorgyan, “Finite subgroups of the relatively free n-torsion groups”, J. Contemp. Math. Anal.-Armen. Aca., 55:1 (2020), 1–4  crossref  mathscinet  zmath  isi
    7. H. T. Aslanyan, A. L. Gevorgyan, H. A. Grigoryan, “Finite subgroups of the free groups of the infinitely based varieties of s. I. Adian”, Armen. J. Math., 11:6 (2019), 1–6  mathscinet  isi
    8. S. I. Adian, V. S. Atabekyan, “N-torsion groups”, J. Contemp. Math. Anal.-Armen. Aca., 54:6 (2019), 319–327  crossref  mathscinet  zmath  isi  scopus
    9. V. S. Atabekyan, H. T. Aslanyan, “The automorphisms of endomorphism semigroups of relatively free groups”, Internat. J. Algebra Comput., 28:2 (2018), 207–215  crossref  mathscinet  zmath  isi  scopus
    10. H. T. Aslanyan, “On automorphisms and endomorphisms of CCCC groups”, Уч. записки ЕГУ, сер. Физика и Математика, 52:1 (2018), 60–63  mathnet
    11. С. И. Адян, В. С. Атабекян, “Центральные расширения свободных периодических групп”, Матем. сб., 209:12 (2018), 3–16  mathnet  crossref  mathscinet  zmath  adsnasa  elib; S. I. Adian, V. S. Atabekyan, “Central extensions of free periodic groups”, Sb. Math., 209:12 (2018), 1677–1689  crossref  isi
    12. С. И. Адян, В. С. Атабекян, “Периодические произведения групп”, Известия НАН РА Математика, 52:3 (2017), 3–15  mathnet; S. I. Adian, V. S. Atabekyan, “Periodic products of groups”, J. Contemp. Math. Anal., Armen. Acad. Sci., 52:3 (2017), 111–117  crossref  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Статистика просмотров:
    Страница аннотации:803
    PDF русской версии:58
    PDF английской версии:13
    Список литературы:79
    Первая страница:25
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025