|
Eurasian Mathematical Journal, 2010, том 1, номер 1, страницы 54–72
(Mi emj7)
|
|
|
|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
On infinite differentiability of solutions of nonhomogeneous almost hypoelliptic equations
H. G. Ghazaryan, V. N. Margaryan Department of mathematics and mathematical modelling, Russian–Armenian (Slavonic) State University, Yerevan, Armenia
Аннотация:
A linear differential operator P(D) with constant coefficients is called almost hypoelliptic if all derivatives P(ν)(ξ) of the characteristic polynomial P(ξ) can be estimated above via P(ξ). In this paper it is proved that all solutions of the equation P(D)u=f where f and all its derivatives are square integrable with a certain exponential weight, which are square integrable with the same weight, are also such that all their derivatives are square integrable with this weight, if and only if the operator P(D) is almost hypoelliptic.
Ключевые слова и фразы:
hypoelliptic operator (polynomial), almost hypoelliptic operator (polynomial), weighted Sobolev spaces.
Поступила в редакцию: 25.12.2009
Образец цитирования:
H. G. Ghazaryan, V. N. Margaryan, “On infinite differentiability of solutions of nonhomogeneous almost hypoelliptic equations”, Eurasian Math. J., 1:1 (2010), 54–72
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj7 https://www.mathnet.ru/rus/emj/v1/i1/p54
|
Статистика просмотров: |
Страница аннотации: | 448 | PDF полного текста: | 145 | Список литературы: | 82 |
|