Дискретная математика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Дискрет. матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Дискретная математика, 2020, том 32, выпуск 1, страницы 135–156
DOI: https://doi.org/10.4213/dm1599
(Mi dm1599)
 

Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)

Большие уклонения ветвящегося процесса в случайной среде. II

А. В. Шкляев

Математический институт им. В.А. Стеклова Российской академии наук
Список литературы:
Аннотация: Рассматриваются вероятности больших уклонений ветвящегося процесса Zn в случайной среде, представляющей собой независимые одинаково распределенные величины. Предполагается, что сопровождающее случайное блуждание Sn=ξ1++ξn имеет конечное среднее μ и удовлетворяет условию Крамера Eehξi<, 0<h<h+. При дополнительных моментных ограничениях на Z1 найдена точная асимптотика вероятностей P(lnZn[x,x+Δn)) при значениях x/n, изменяющихся в зависящем от типа процесса диапазоне, и всех достаточно медленно стремящихся к нулю при n последовательностей Δn. Аналогичная теорема доказывается для случайного процесса в случайной среде с иммиграцией.
Ключевые слова: ветвящиеся процессы в случайной среде, вероятности больших уклонений, ветвящиеся процессы с иммиграцией.
Финансовая поддержка Номер гранта
Российский научный фонд 19-11-00111
Исследование выполнено за счет гранта Российского научного фонда (проект 19-11-00111) в Математическом институте им. В. А. Стеклова Российской академии наук.
Статья поступила: 10.10.2019
Англоязычная версия:
Discrete Mathematics and Applications, 2021, Volume 31, Issue 6, Pages 431–447
DOI: https://doi.org/10.1515/dma-2021-0039
Реферативные базы данных:
Тип публикации: Статья
УДК: 519.218.27
Образец цитирования: А. В. Шкляев, “Большие уклонения ветвящегося процесса в случайной среде. II”, Дискрет. матем., 32:1 (2020), 135–156; Discrete Math. Appl., 31:6 (2021), 431–447
Цитирование в формате AMSBIB
\RBibitem{Shk20}
\by А.~В.~Шкляев
\paper Большие уклонения ветвящегося процесса в случайной среде.~II
\jour Дискрет. матем.
\yr 2020
\vol 32
\issue 1
\pages 135--156
\mathnet{http://mi.mathnet.ru/dm1599}
\crossref{https://doi.org/10.4213/dm1599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4123504}
\elib{https://elibrary.ru/item.asp?id=47550445}
\transl
\jour Discrete Math. Appl.
\yr 2021
\vol 31
\issue 6
\pages 431--447
\crossref{https://doi.org/10.1515/dma-2021-0039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000730399800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85121778266}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/dm1599
  • https://doi.org/10.4213/dm1599
  • https://www.mathnet.ru/rus/dm/v32/i1/p135
    Цикл статей
    Эта публикация цитируется в следующих 8 статьяx:
    1. А. В. Шкляев, “Условная функциональная предельная теорема для случайной рекуррентной последовательности при условии совершения ею большого уклонения”, Теория вероятн. и ее примен., 69:1 (2024), 125–147  mathnet  crossref; A. V. Shklyaev, “Conditional functional limit theorem for random reccurence sequence conditioned on large deviation event”, Theory Probab. Appl., 69:1 (2024), 99–116  crossref
    2. А. В. Шкляев, “Нижние большие уклонения ветвящегося процесса в случайной среде”, Дискрет. матем., 36:3 (2024), 127–140  mathnet  crossref
    3. А. В. Шкляев, “Большие уклонения ветвящегося процесса с частицами двух полов в случайной среде”, Дискрет. матем., 35:3 (2023), 125–142  mathnet  crossref
    4. А. В. Шкляев, “Большие уклонения строго докритического ветвящегося процесса в случайной среде”, Ветвящиеся процессы и смежные вопросы, Сборник статей. К 75-летию со дня рождения Андрея Михайловича Зубкова и 70-летию со дня рождения Владимира Алексеевича Ватутина, Труды МИАН, 316, МИАН, М., 2022, 316–335  mathnet  crossref  mathscinet; A. V. Shklyaev, “Large Deviations of a Strongly Subcritical Branching Process in a Random Environment”, Proc. Steklov Inst. Math., 316 (2022), 298–317  crossref
    5. M.A. Struleva, E.I. Prokopenko, “Integro-local limit theorems for supercritical branching process in a random environment”, Statistics & Probability Letters, 181 (2022), 109234  crossref
    6. К. Ю. Денисов, “Локальная асимптотика вероятностей нижних уклонений строго надкритических ветвящихся процессов в случайной среде с геометрическими распределениями чисел потомков”, Дискрет. матем., 34:4 (2022), 14–27  mathnet  crossref  mathscinet; K. Yu. Denisov, “Asymptotic local lower deviations of strictly supercritical branching process in a random environment with geometric distributions of descendants”, Discrete Math. Appl., 34:4 (2024), 197–206  crossref  isi
    7. К. Ю. Денисов, “Асимптотика локальных вероятностей больших уклонений ветвящегося процесса в случайной среде с геометрическим распределением числа потомков”, Дискрет. матем., 33:4 (2021), 19–31  mathnet  crossref; K. Yu. Denisov, “Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants”, Discrete Math. Appl., 33:2 (2023), 77–86  crossref
    8. К. Ю. Денисов, “Асимптотика локальных вероятностей нижних уклонений ветвящегося процесса в случайной среде при геометрических распределениях чисел потомков”, Дискрет. матем., 32:3 (2020), 24–37  mathnet  crossref  mathscinet; K. Yu. Denisov, “Asymptotical local probabilities of lower deviations for branching process in random environment with geometric distributions of descendants”, Discrete Math. Appl., 32:5 (2022), 313–323  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Статистика просмотров:
    Страница аннотации:582
    PDF полного текста:125
    Список литературы:54
    Первая страница:21
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025