Аннотация:
Работа посвящена обзору основных результатов, полученных при решении экстремальных задач Турана и Дельсарта на торе; экстремальных задач Турана, Фейера, Дельсарта, Бомана и Логана на евклидовом пространстве, полупрямой и гиперболоиде. Приводятся также результаты, полученные при решении близкой задачи об оптимальном аргументе в модуле непрерывности в точном неравенстве Джексона в пространстве L2 на евклидовом пространстве и полупрямой. Большая часть результатов была получена авторами обзора. В основу обзора лег доклад, сделанный В.И. Ивановым на симпозиуме «6th Workshop on Fourier Analysis and Related Fields, Pecs, Hungary, 24-31 August 2017». Решается также задача об оптимальном аргументе на гиперболоиде. В качестве основного аппарата при решении экстремальных задач на полупрямой используются квадратурные формулы Гаусса и Маркова на полупрямой по нулям собственных функций задачи Штурма–Лиувилля. Для многомерных экстремальных задач осуществляется редукция к одномерным задачам с помощью усреднения допустимых функций по евклидовой сфере. Во всех случаях экстремальная функция единственна.
Ключевые слова:
преобразования Фурье, Ганкеля и Якоби, экстремальные задачи Турана, Фейера, Дельсарта, Бомана и Логана, квадратурные формулы Гаусса и Маркова.
Работа выполнена при финансовой поддержке РФФИ, грант № 16-01-00308.
Поступила в редакцию: 06.08.2017 Принята в печать: 14.12.2017
Тип публикации:
Статья
УДК:
517.5
Образец цитирования:
Д. В. Горбачев, В. И. Иванов, Е. П. Офицеров, О. И. Смирнов, “Некоторые экстремальные задачи гармонического анализа и теории приближений”, Чебышевский сб., 18:4 (2017), 140–167
\RBibitem{GorIvaOfi17}
\by Д.~В.~Горбачев, В.~И.~Иванов, Е.~П.~Офицеров, О.~И.~Смирнов
\paper Некоторые экстремальные задачи гармонического анализа и теории приближений
\jour Чебышевский сб.
\yr 2017
\vol 18
\issue 4
\pages 140--167
\mathnet{http://mi.mathnet.ru/cheb603}
\crossref{https://doi.org/10.22405/2226-8383-2017-18-4-139-166}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/cheb603
https://www.mathnet.ru/rus/cheb/v18/i4/p140
Эта публикация цитируется в следующих 2 статьяx:
Д. В. Горбачев, В. И. Иванов, “Экстремальные задачи Турана, Фейера, Бомана для многомерного преобразования Фурье по собственным функциям задачи Штурма–Лиувилля”, Матем. сб., 210:6 (2019), 56–81; D. V. Gorbachev, V. I. Ivanov, “Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem”, Sb. Math., 210:6 (2019), 809–835
Д. В. Горбачев, В. И. Иванов, Е. П. Офицеров, О. И. Смирнов, “Вторая экстремальная задача Логана для преобразования Фурье по собственным функциям оператора Штурма–Лиувилля”, Чебышевский сб., 19:1 (2018), 57–78