Аннотация:
We construct cubature formulas on spheres supported by homothetic images of shells in some Euclidean lattices. Our analysis of these cubature formulas uses results from the theory of modular forms. Examples are worked out on Sn−1 for n=4, 8, 12, 14, 16, 20, 23, and 24, and the sizes of the cubature formulas we obtain are compared with the lower bounds given by Linear Programming.
Образец цитирования:
P. de la Harpe, C. Pache, B. Venkov, “Construction of spherical cubature formulas using lattices”, Алгебра и анализ, 18:1 (2006), 162–186; St. Petersburg Math. J., 18:1 (2007), 119–139
\RBibitem{De PacVen06}
\by P.~de la Harpe, C.~Pache, B.~Venkov
\paper Construction of spherical cubature formulas using lattices
\jour Алгебра и анализ
\yr 2006
\vol 18
\issue 1
\pages 162--186
\mathnet{http://mi.mathnet.ru/aa64}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2225217}
\zmath{https://zbmath.org/?q=an:1122.65028}
\elib{https://elibrary.ru/item.asp?id=9212603}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 1
\pages 119--139
\crossref{https://doi.org/10.1090/S1061-0022-07-00946-6}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa64
https://www.mathnet.ru/rus/aa/v18/i1/p162
Эта публикация цитируется в следующих 13 статьяx:
Masatake Hirao, Hiroshi Nozaki, Koji Tasaka, “Spherical designs and modular forms of the D4 lattice”, Res. number theory, 9:4 (2023)
Hakova L., Hrivnak J., Motlochova L., “on Cubature Rules Associated to Weyl Group Orbit Functions”, Acta Polytech., 56:3 (2016), 202–213
Sawa M., Xu Yu., “On Positive Cubature Rules on the Simplex and Isometric Embeddings”, Math. Comput., 83:287 (2014), 1251–1277
H. Nozaki, M. Sawa, “Remarks on Hilbert identities, isometric embeddings, and invariant cubature”, Алгебра и анализ, 25:4 (2013), 139–181; St. Petersburg Math. J., 25:4 (2014), 615–646
Eiichi Bannai, Tsuyoshi Miezaki, Developments in Mathematics, 31, Quadratic and Higher Degree Forms, 2013, 1
Э. Баннаи, Т. Миезаки, В. А. Юдин, “Элементарный подход для игровых моделей гипотезы Лемера”, Изв. РАН. Сер. матем., 75:6 (2011), 3–16; E. Bannai, Ts. Miezaki, V. A. Yudin, “An elementary approach to toy models for D. H. Lehmer's conjecture”, Izv. Math., 75:6 (2011), 1093–1106
Bannai E., Bannaia E., Hiraob M., Sawab M., “Cubature formulas in numerical analysis and Euclidean tight designs”, European J. Combin., 31:2 (2010), 423–441
Bondarenko A.V., Viazovska M.S., “Spherical designs via Brouwer fixed point theorem”, SIAM J. Discrete Math., 24:1 (2010), 207–217
Bannai E., Miezaki Ts., “Toy models for D. H. Lehmer's conjecture”, J Math Soc Japan, 62:3 (2010), 687–705
В. А. Юдин, “Инварианты и многочлены Чебышева”, Тр. ИММ УрО РАН, 15, № 1, 2009, 222–239; V. A. Yudin, “Invariants and Chebyshev polynomials”, Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S227–S245
Bannai E., Bannai E., “A survey on spherical designs and algebraic combinatorics on spheres”, European J. Combin., 30:6 (2009), 1392–1425
Bondarenko A. V., Viazovska M. S., “New asymptotic estimates for spherical designs”, J. Approx. Theory, 152:1 (2008), 101–106
Scott A. J., “Optimizing quantum process tomography with unitary 2-designs”, J. Phys. A, 41:5 (2008), 055308, 26 pp.