Аннотация:
Получены достаточные условия существования локального и глобального по времени вероятностного решения задачи Коши для нелинейного параболического уравнения. Кроме того, указаны условия, при которых глобального решения нет.
Образец цитирования:
О. А. Манита, С. В. Шапошников, “Нелинейные параболические уравнения для мер”, Алгебра и анализ, 25:1 (2013), 64–93; St. Petersburg Math. J., 25:1 (2014), 43–62
\RBibitem{ManSha13}
\by О.~А.~Манита, С.~В.~Шапошников
\paper Нелинейные параболические уравнения для мер
\jour Алгебра и анализ
\yr 2013
\vol 25
\issue 1
\pages 64--93
\mathnet{http://mi.mathnet.ru/aa1317}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113428}
\zmath{https://zbmath.org/?q=an:1286.35137}
\elib{https://elibrary.ru/item.asp?id=20730191}
\transl
\jour St. Petersburg Math. J.
\yr 2014
\vol 25
\issue 1
\pages 43--62
\crossref{https://doi.org/10.1090/S1061-0022-2013-01279-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343073800003}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1317
https://www.mathnet.ru/rus/aa/v25/i1/p64
Эта публикация цитируется в следующих 21 статьяx:
Viorel Barbu, Michael Röckner, Lecture Notes in Mathematics, 2353, Nonlinear Fokker-Planck Flows and their Probabilistic Counterparts, 2024, 13
В. И. Богачев, С. В. Шапошников, “Нелинейные уравнения Фоккера–Планка–Колмогорова”, УМН, 79:5(479) (2024), 3–60; V. I. Bogachev, S. V. Shaposhnikov, “Nonlinear Fokker–Planck–Kolmogorov equations”, Russian Math. Surveys, 79:5 (2024), 751–805
Gennaro Ciampa, Francesco Rossi, “Vanishing viscosity in mean-field optimal control”, ESAIM: COCV, 29 (2023), 29
Della Maestra L., Hoffmann M., “Nonparametric Estimation For Interacting Particle Systems: Mckean-Vlasov Models”, Probab. Theory Relat. Field, 182:1-2 (2022), 551–613
Marco Rehmeier, “Flow selections for (nonlinear) Fokker–Planck–Kolmogorov equations”, Journal of Differential Equations, 328 (2022), 105
Bogachev V.I., Roeckner M., Shaposhnikov S.V., “On the Ambrosio-Figalli-Trevisan Superposition Principle For Probability Solutions to Fokker-Planck-Kolmogorov Equations”, J. Dyn. Differ. Equ., 33:2 (2021), 715–739
Roeckner M., Zhang X., “Well-Posedness of Distribution Dependent Sdes With Singular Drifts”, Bernoulli, 27:2 (2021), 1131–1158
Gennaro Ciampa, Francesco Rossi, 2021 60th IEEE Conference on Decision and Control (CDC), 2021, 185
Bogachev I V., Roeckner M., Shaposhnikov V S., “Convergence in Variation of Solutions of Nonlinear Fokker-Planck-Kolmogorov Equations to Stationary Measures”, J. Funct. Anal., 276:12 (2019), 3681–3713
V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On Convergence to Stationary Distributions for Solutions of Nonlinear Fokker–Planck–Kolmogorov Equations”, J Math Sci, 242:1 (2019), 69
E. Carlini, F. J. Silva, “On the discretization of some nonlinear Fokker–Planck–Kolmogorov equations and applications”, SIAM J. Numer. Anal., 56:4 (2018), 2148–2177
Oxana A. Manita, Maxim S. Romanov, Stanislav V. Shaposhnikov, “Estimates of distances between solutions of Fokker–Planck–Kolmogorov equations with partially degenerate diffusion matrices”, Theory Stoch. Process., 23(39):2 (2018), 41–54
Stanislav V. Shaposhnikov, Springer Proceedings in Mathematics & Statistics, 229, Stochastic Partial Differential Equations and Related Fields, 2018, 367
O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “Fokker–Planck–Kolmogorov equations with a partially degenerate diffusion matrix”, Dokl. Math., 96:1 (2017), 384–388
O. A. Manita, “Estimates for transportation costs along solutions to Fokker–Planck–Kolmogorov equations with dissipative drifts”, Rend. Lincei-Mat. Appl., 28:3 (2017), 601–618
V. I. Bogachev, M. Roeckner, S. V. Shaposhnikov, “Estimates of distances between transition probabilities of diffusions”, Dokl. Math., 93:2 (2016), 135–139
V. I. Bogachev, M. Roeckner, S. V. Shaposhnikov, “Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations”, J. Funct. Anal., 271:5 (2016), 1262–1300
O. A. Manita, “Nonlinear Fokker–Planck–Kolmogorov equations in Hilbert spaces”, Теория представлений, динамические системы, комбинаторные методы. XXVI, Зап. научн. сем. ПОМИ, 437, ПОМИ, СПб., 2015, 184–206; J. Math. Sci. (N. Y.), 216:1 (2016), 120–135
O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “On uniqueness of solutions to nonlinear Fokker–Planck–Kolmogorov equatio”, Nonlinear Anal., 128 (2015), 199–226