Аннотация:
We study billiard systems within an ellipsoid in the 4-dimensional pseudo-Euclidean
spaces. We provide an analysis and description of periodic and weak periodic trajectories in
algebro-geometric and functional-polynomial terms.
The research was supported by the Australian Research Council, Discovery Project #DP190101838
Billiards within quadrics and beyond, by the Simons Foundation grant no. 854861, by the
Mathematical Institute of the Serbian Academy of Sciences and Arts, the Science Fund of Serbia
grant Integrability and Extremal Problems in Mechanics, Geometry and Combinatorics, MEGIC,
Grant No. 7744592 and the Ministry for Education, Science, and Technological Development of
Serbia.
Поступила в редакцию: 29.11.2022 Принята в печать: 05.01.2023
Образец цитирования:
Vladimir Dragović, Milena Radnović, “Billiards Within Ellipsoids in the 4-Dimensional
Pseudo-Euclidean Spaces”, Regul. Chaotic Dyn., 28:1 (2023), 14–43
\RBibitem{DraRad23}
\by Vladimir Dragovi\'c, Milena Radnovi\'c
\paper Billiards Within Ellipsoids in the 4-Dimensional
Pseudo-Euclidean Spaces
\jour Regul. Chaotic Dyn.
\yr 2023
\vol 28
\issue 1
\pages 14--43
\mathnet{http://mi.mathnet.ru/rcd1193}
\crossref{https://doi.org/10.1134/S1560354723010033}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4559067}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1193
https://www.mathnet.ru/rus/rcd/v28/i1/p14
Эта публикация цитируется в следующих 2 статьяx:
В. В. Козлов, “Об устойчивости равновесий в псевдоримановом пространстве”, УМН, 80:1(481) (2025), 59–84
Vladimir Dragović, Milena Radnović, “Resonance of ellipsoidal billiard trajectories and extremal rational functions”, Advances in Mathematics, 424 (2023), 109044