Аннотация:
Given a $4d$$\mathcal N=2$ SYM theory, one can construct the Seiberg-Witten prepotentional, which involves a sum over instantons. Integrals over instanton moduli spaces require regularisation. For UV-finite theories the AGT conjecture favours particular, Nekrasov's way of regularization. It implies that Nekrasov's partition function equals conformal blocks in $2d$ theories with $W_{N_c}$ chiral algebra (virasoro algebra in our case). For $N_c=2$ and one adjoint multiplet it coincides with a torus 1-point Virasoro conformal block. We check the AGT relation between conformal dimension and adjoint multiplet's mass in this case and investigate the large mass limit of the conformal block, which corresponds to asymptotically free $4d$$\mathcal N=2$ super symmetric Yang-Mills theory. Though technically more involved, the limit is the same as in the case of fundamental multiplets, and this provides one more non-trivial check of AGT conjecture.
Образец цитирования:
V. Alba, A. A. Morozov, “Non-conformal limit of AGT relation from the 1-point torus conformal block”, Письма в ЖЭТФ, 90:11 (2009), 803–807; JETP Letters, 90:11 (2009), 708–712
\RBibitem{AlbMor09}
\by V.~Alba, A.~A.~Morozov
\paper Non-conformal limit of AGT relation from the 1-point torus conformal block
\jour Письма в ЖЭТФ
\yr 2009
\vol 90
\issue 11
\pages 803--807
\mathnet{http://mi.mathnet.ru/jetpl598}
\transl
\jour JETP Letters
\yr 2009
\vol 90
\issue 11
\pages 708--712
\crossref{https://doi.org/10.1134/S0021364009230040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275104100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949355107}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl598
https://www.mathnet.ru/rus/jetpl/v90/i11/p803
Эта публикация цитируется в следующих 31 статьяx:
Bruno Le Floch, J. Phys. A: Math. Theor., 55:35 (2022), 353002
Piatek M., Pietrykowski A.R., Nucl. Phys. B, 938 (2019), 543–570
Piatek M.R., Pietrykowski A.R., Xxv International Conference on Integrable Systems and Quantum Symmetries (Isqs-25), Journal of Physics Conference Series, 965, IOP Publishing Ltd, 2018
Piatek M., Pietrykowski A.R., J. High Energy Phys., 2016, no. 1, 115
Piatek M., Pietrykowski A.R., J. High Energy Phys., 2016, no. 7, 131
А. В. Пополитов, ТМФ, 178:2 (2014), 274–289; A. V. Popolitov, Theoret. and Math. Phys., 178:2 (2014), 239–252
Anokhina A., Morozov A., J. High Energy Phys., 2014, no. 7, 063
Piateka M., Pietrykowski A.R., J. High Energy Phys., 2014, no. 12, 032
Bourgine J.-E., J. High Energy Phys., 2013, no. 5, 047
Menotti P., J. High Energy Phys., 2013, no. 9, 132
Mironov A., Morozov A., Shakirov Sh., Internat J Modern Phys A, 27:1 (2012), 1230001
Mironov A., Morozov A., Shakirov Sh., Smirnov A., Nuclear Phys B, 855:1 (2012), 128–151
Д. В. Галахов, А. Д. Миронов, А. Ю. Морозов, А. В. Смирнов, ТМФ, 172:1 (2012), 73–99; D. V. Galakhov, A. D. Mironov, A. Yu. Morozov, A. V. Smirnov, Theoret. and Math. Phys., 172:1 (2012), 939–962
А. Ю. Морозов, ТМФ, 173:1 (2012), 104–126; A. Yu. Morozov, Theoret. and Math. Phys., 173:1 (2012), 1417–1437
Menotti P., J. High Energy Phys., 2012, no. 12, 001
Bourgine J.-E., J. High Energy Phys., 2012, no. 8, 046
Motegi K., Tai T.-Sh., Yoshioka R., J. High Energy Phys., 2012, no. 6, 121
Mironov A., Morozov A., Shakirov Sh., Journal of Physics A-Mathematical and Theoretical, 44:8 (2011), 085401